• Title/Summary/Keyword: 동적분류

Search Result 536, Processing Time 0.034 seconds

A Static Analysis of Android Programs (안드로이드 프로그램 정적 분석 고찰)

  • Lee, Ho-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.227-229
    • /
    • 2012
  • 본 논문은 Android 프로그램의 정적 분석 방법을 논의한다. Android 프로그램 정적 분석의 목적은 오류발견, 개인정보 해킹 코드 발견, 바이러스 발견, 프로그램 분류 등등이다. 본 논문에서는 Android 프로그램의 분석을 위하여 구문 패턴 정적 분석과 프로그램으로부터 객체 다이아그람과 Flowchart 를 생성하여 프로그램 동적 실행을 추정하여 분석하는 통합된 정적 분석 방법을 논의한다. 프로그램 실행 추정 분석은 프로그램에서 객체 생성, 메소드 호출, 데이터 흐름, 실행 흐름, API 호출과 진행 과정 등을 추정하여, 구문 패턴 정적 분석만으로는 파악하지 못하는 프로그램 실행의 동적 분석이 가능하도록 한다.

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Design and Implementation of Web Directory Engine Using Dynamic Category Hierarchy (동적분류에 의한 주제별 웹 검색엔진의 설계 및 구현)

  • Choi Bum-Ghi;Park Sun;Park Tae-Su;Song Jae-Won;Lee Ju-Hong
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.71-80
    • /
    • 2006
  • In web search engines, there are two main methods: directory searching and keyword searching. Keyword searching shows high recall rate but tends to come up with too many search results to find which users want to see the pages. Directory searching has also a difficulty to find the pages that users want in case of selecting improper category without knowing the exact category, that is, it shows high precision rates but low recall rates. We designed and implemented a new web search engine to resolve the problems of directory search method. It regards a category as a fuzzy set which contains keywords and calculate the degree of inclusion between categories. The merit of this method is to enhance the recall rate of directory searching by expanding subcategories on the basis of similarity.

  • PDF

Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm (Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.395-400
    • /
    • 2011
  • In this paper, we propose an study of the facial emotion recognition considering the dynamical variation of emotional state in facial image sequences. The proposed system consists of two main step: facial image based emotional feature extraction and emotional state classification/recognition. At first, we propose a method for extracting and analyzing the emotional feature region using a combination of Active Shape Model (ASM) and Facial Action Units (FAUs). And then, it is proposed that emotional state classification and recognition method based on Hidden Markov Model (HMM) type of dynamic Bayesian network. Also, we adopt a Harmony Search (HS) algorithm based heuristic optimization procedure in a parameter learning of HMM in order to classify the emotional state more accurately. By using all these methods, we construct the emotion recognition system based on variations of the dynamic facial image sequence and make an attempt at improvement of the recognition performance.

Purchase Transaction Similarity Measure Considering Product Taxonomy (상품 분류 체계를 고려한 구매이력 유사도 측정 기법)

  • Yang, Yu-Jeong;Lee, Ki Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.363-372
    • /
    • 2019
  • A sequence refers to data in which the order exists on the two items, and purchase transaction data in which the products purchased by one customer are listed is one of the representative sequence data. In general, all goods have a product taxonomy, such as category/ sub-category/ sub-sub category, and if they are similar to each other, they are classified into the same category according to their characteristics. Therefore, in this paper, we not only consider the purchase order of products to compare two purchase transaction sequences, but also calculate their similarity by giving a higher score if they are in the same category in spite of their difference. Especially, in order to choose the best similarity measure that directly affects the calculation performance of the purchase transaction sequences, we have compared the performance of three representative similarity measures, the Levenshtein distance, dynamic time warping distance, and the Needleman-Wunsch similarity. We have extended the existing methods to take into account the product taxonomy. For conventional similarity measures, the comparison of goods in two sequences is calculated by simply assigning a value of 0 or 1 according to whether or not the product is matched. However, the proposed method is subdivided to have a value between 0 and 1 using the product taxonomy tree to give a different degree of relevance between the two products, even if they are different products. Through experiments, we have confirmed that the proposed method was measured the similarity more accurately than the previous method. Furthermore, we have confirmed that dynamic time warping distance was the most suitable measure because it considered the degree of association of the product in the sequence and showed good performance for two sequences with different lengths.

Prescriptive Analytics System Design Fusing Automatic Classification Method and Intellectual Structure Analysis Method (자동 분류 기법과 지적 구조 분석 기법을 융합한 처방적 분석 시스템 구현 방안 연구)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.33-57
    • /
    • 2017
  • This study aims to introduce an emerging prescriptive analytics method and suggest its efficient application to a category-based service system. Prescriptive analytics method provides the whole process of analysis and available alternatives as well as the results of analysis. To simulate the process of optimization, large scale journal articles have been collected and categorized by classification scheme. In the process of applying the concept of prescriptive analytics to a real system, we have fused a dynamic automatic-categorization method for large scale documents and intellectual structure analysis method for scholarly subject fields. The test result shows that some optimized scenarios can be generated efficiently and utilized effectively for reorganizing the classification-based service system.

An Integrated Data Mining Model for Customer Relationship Management (고객관계관리를 위한 데이터마이닝 통합모형에 관한 연구)

  • Song, Im-Young;Oh, R.D.;Yi, T.S.;Shin, K.J.;Kim, K.C.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.154-159
    • /
    • 2006
  • 본 논문은 웹 서버에 의해 자동으로 수집되는 로그 파일로부터 고객 가치 판단 기준을 고객의 행동 기반에 두고 군집화 기법을 이용하여 고객을 세분화하고 세분화 결과에 의사결정나무를 적용함으로써 고객을 분류하는 통합 모형을 제안하였다. 또한, 분류된 고객들의 주 서비스 활용 패턴을 분석하기 위하여 연관규칙기법을 적용하여 고객의 과학기술정보 활용의 연관성을 분석함으로써, 과학정보포털 서비스를 제공하는 사이트 이용자의 분류군에 해당하는 정보와 인터페이스를 제공하는 새로운 방법에 대하여 연구하였다. 고객 관리 측면에서 본 논문은 정보 서비스를 제공하는 웹 사이트의 기존고객을 분류하여 패턴을 분석함으로써 고객 위주의 사이트 운영정책과 동적 인터페이스를 제공하기 위한 웹사이트 활용 방안을 제시하였다. 또한, 고객의 지속적인 관리라 각 고객 분류군별에 안는 서비스를 제공하고 고객의 관리에도 기여할 수 있을 것이다.

  • PDF

Study on Faults Diagnosis of Induction Motor Using KPCA Feature Extraction Technique (KPCA 특징추출기법을 이용한 유도전동기 결함 진단 연구)

  • Han, Sang-Bo;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1063-1064
    • /
    • 2007
  • 본 연구는 유도전동기 진단시스템을 개발하기 위하여 테스트 전동기 내부에 취부된 자속센서 신호를 사용한 알고리즘 적용 결과를 논한 것으로서 분류기별 고장 판별 정확도에 대하여 서술하였다. 특징추출은 Kernel Principal Component Analysis (KPCA) 방법을 이용 하였으며, 테스트 샘플들에 대해서는 LDA(Linear Discriminant Analysis)와 k-NN(k-Nearest neighbors) 분류기법을 이용하여 판별하였다. 회전자 바 손상이나 편심(동적/정적)인 경우는 두 가지 분류기 모두 95[%]이상의 높은 분류 정확도를 보였지만, LDA인 경우 정상상태를 비롯한 베이링 불량이나, 샤프트 변형인 경우는 낮은 분류율을 보였다.

  • PDF

Research on Skype Traffic Classification (Skype 트래픽 분류에 관한 연구)

  • Lee, Sang-Woo;Jung, Ah-Joo;Lee, Hyun-Shin;Kim, Myung-Sup
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.1112-1115
    • /
    • 2009
  • 네트워크 관리자 입장에서 효율적인 네트워크 관리를 위해 응용 프로그램 별 트래픽 분류의 중요성이 커지고 있다. 응용 프로그램 별 트래픽 분류를 위해 signature 기반, machine learning 방법들이 제안되고 있지만 p2p 방식의 Skype 응용프로그램에 대한 적용결과는 그 신뢰성이 떨어지고 있는 것은 사실이다. 본 논문에서는 Skype의 트래픽을 분류하기 위해 각 Client 마다 Skype application install 시 동적으로 변화하는 Port 를 알아내는 방법, UDP 패킷의 특정위치의 특정 signature, TCP signal flow의 특정위치 패킷에 대한 payload 크기 등을 이용한 Skype traffic 분류 방법을 제안한다. 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 TMA를 통해 검증하였다.

Design and Implementation of Web Mail Filtering Agent for Personalized Classification (개인화된 분류를 위한 웹 메일 필터링 에이전트)

  • Jeong, Ok-Ran;Cho, Dong-Sub
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.853-862
    • /
    • 2003
  • Many more use e-mail purely on a personal basis and the pool of e-mail users is growing daily. Also, the amount of mails, which are transmitted in electronic commerce, is getting more and more. Because of its convenience, a mass of spam mails is flooding everyday. And yet automated techniques for learning to filter e-mail have yet to significantly affect the e-mail market. This paper suggests Web Mail Filtering Agent for Personalized Classification, which automatically manages mails adjusting to the user. It is based on web mail, which can be logged in any time, any place and has no limitation in any system. In case new mails are received, it first makes some personal rules in use of the result of observation ; and based on the personal rules, it automatically classifies the mails into categories according to the contents of mails and saves the classified mails in the relevant folders or deletes the unnecessary mails and spam mails. And, we applied Bayesian Algorithm using Dynamic Threshold for our system's accuracy.