• Title/Summary/Keyword: 동적분류

Search Result 536, Processing Time 0.039 seconds

Performance Analysis of Machine Learning Algorithms for Application Traffic Classification (애플리케이션 트래픽 분류를 위한 머신러닝 알고리즘 성능 분석)

  • Kim, Sung-Yun;Kim, Myung-Sup
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.968-970
    • /
    • 2008
  • 기존에 트래픽 분류 방법으로 payload 분석이나 well-known port를 이용한 방법을 많이 사용했다. 하지만 동적으로 변하는 애플리케이션이 늘어남에 따라 기존 방법으로 애플리케이션 트래픽 분류가 어렵다. 이러한 문제의 대안으로 Machine Learning(ML) 알고리즘을 이용한 애플리케이션 트래픽 분류방법이 연구되고 있다. 기존의 논문에서는 일정 시간동안 수집한 data set을 사용하기 때문에 적게 발생한 애플리케이션은 제대로 분류하지 못하여도 전체적으로는 좋은 성능을 보일 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 각 애플리케이션마다 동일한 수의 data set을 수집하여 애플리케이션 트래픽을 분류하는 방법을 제시한다. ML 알고리즘 중 J48, REPTree, BayesNet, NaiveBayes, Multilayer Perceptron 알고리즘을 이용하여 애플리케이션 트래픽 분류의 정확도를 비교한다.

Analysis on Dynamic Software Defects for Increasing Weapon System Reliability (국방 무기체계 소프트웨어 신뢰성 향상을 위한 소프트웨어 동적 결함 분석)

  • Park, Jihyun;Choi, Byoungju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.249-258
    • /
    • 2018
  • The importance of software in military weapon systems is increasing, and the software structure is becoming more complicated. We therefore must thoroughly verify its reliability. In particular, the defects from the interaction of the software components that make up the weapon system are difficult to prevent only with static testing and code coverage level dynamic testing. In this paper, we classify dynamic software defect types and analyze the issues reported in the Open Source Software (OSS) used in the US department of defense weapon systems. The dynamic defects classified in this paper usually occur after integration, and it is difficult to reproduce and identify the cause. Based on this analysis, we come to the point that the software integration test must be enhanced in order to verify the reliability of the weapon system.

Analyzing Dependency of Korean Subordinate Clauses Using Support Vector Machine (SVM을 사용한 한국어 종속절의 의존관계 분석)

  • Kim, Sang-Soo;Park, Seong-Bae;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.148-155
    • /
    • 2006
  • 한국어 구문 분석에서 가장 어려운 작업들 중에 하나는 종속절의 의존관계 파악이다. 본 논문에서는 이를 해결하기 위해서 종속절의 의존관계를 걸을 구성하는 서술어부(동사와 어미)의 관련 정보의 유무에 따라 의존관계가 성립한다고 가정했다. 즉 각각의 절들의 서술부의 관련 정보의 유무로 보고, 이진 분류 문제로 이 문제를 해결하였다. 사용한 자질은 정적 자질(static feature)와 동적 자질(dynamic feature)를 구성되어 있다. 정적 자질은 동사와 어미에서 표면적인 어휘 정보이고 이는 단어, POS 테그 및 위치 정보들이다. 동적 자질은 문장에서 절이 가지는 문법적인 형태를 의미하고, 이를 추출하기 위해 간단한 규칙을 만들고 이를 바탕으로 CKY 차트 파서를 통하여 추출하였다. 기계학습 방법으로는 이진 분류 문제에서 널리 사용되는 SVM을 사용하였다. 실험 결과 어휘 정보들 중에서 어미의 정보만 사용하였을 경우는 64.4%의 정확도를 보였고 문법적인 정보인 동적 자질을 사용한 경우는 73.5%로 어휘 정보만을 사용한 경우 보다 9.1%의 성능 향상됨을 보였다

  • PDF

A Leaf Image Retrieval Scheme based on Shape Descriptor and Dynamic Time Warping (윤곽선 특성과 동적 시간 정합을 이용한 식물 잎 이미지 검색 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.3-5
    • /
    • 2007
  • 본 논문에서는 새로운 내용기반 이미지 검색 기법으로 식물 잎의 윤곽선에 대하여 동적 시간 정합 기법을 이용하여 유사한 이미지를 효과적으로 검색하는 방법을 제안한다. 이를 위하여 우선 식물 잎의 기준점에 대하여 잎의 가장자리를 따라 가면서 구해지는 거리의 곡선을 통하여 잎의 외형 특성을 표현하였다. 추출된 곡선 정보의 효율적인 저장과 처리를 위하여 곡선의 특성을 표현할 수 있는 퓨리에 계수(Fourier Coefficients)를 계산하고 이를 바탕으로 유사한 이미지를 계산하였다. 이런 과정에서 생기는 문제점으로는 복잡한 형태의 곡선에 대해서는 퓨리에 계수를 통하여 저장하고 복원하는 과정에서 원본 곡선의 세부적인 형태 정보를 상실하게 된다. 이러한 문제를 해결하기 위해서는 복잡한 곡선 유형에 대해서는 복원시 상실되는 정보가 최소화될 수 있는 작은 단위의 구간으로 나누고 이에 대한 퓨리에 계수를 계산하는 방법으로 다수의 퓨리에 계수 세트를 추출하는 이진 구간 분할 (Binary Range Reduction) 알고리즘을 사용하였고 질의 이미지와 저장된 이미지들을 비교하는 과정에서 검색의 정확도를 향상시키기 위하여 동적 시간 정합(Dynamic Time Warping) 알고리즘을 사용하였다. 그리고 검색의 효율을 더욱 높이기 위하여 추출된 외형 정보를 기반으로 잎의 유형을 다양한 카테고리로 분류하는 외형 기형 기반의 잎 분류 기법을 제안하였다. 다양한 실험을 통하여 제안한 기법이 식물 잎 검색에 우수한 성능을 나타냄을 보인다.

Sleep/Wake Dynamic Classifier based on Wearable Accelerometer Device Measurement (웨어러블 가속도 기기 측정에 의한 수면/비수면 동적 분류)

  • Park, Jaihyun;Kim, Daehun;Ku, Bonhwa;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.126-134
    • /
    • 2015
  • A sleep disorder is being recognized as one of the major health issues related to high levels of stress. At the same time, interests about quality of sleep are rapidly increasing. However, diagnosing sleep disorder is not a simple task because patients should undergo polysomnography test, which requires a long time and high cost. To solve this problem, an accelerometer embedded wrist-worn device is being considered as a simple and low cost solution. However, conventional methods determine a state of user to "sleep" or "wake" according to whether values of individual section's accelerometer data exceed a certain threshold or not. As a result, a high miss-classification rate is observed due to user's intermittent movements while sleeping and tiny movements while awake. In this paper, we propose a novel method that resolves the above problems by employing a dynamic classifier which evaluates a similarity between the neighboring data scores obtained from SVM classifier. A performance of the proposed method is evaluated using 50 data sets and its superiority is verified by achieving 88.9% accuracy, 88.9% sensitivity, and 88.5% specificity.

A Hybrid Neural Network Model for Dynamic Hand Gesture Recognition (동적 수신호 인식을 위한 복합형 신경망 모델)

  • Lee, Joseph S.;Park, Jin-Hee;Kim, Ho-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.287-292
    • /
    • 2007
  • 본 연구에서는 동적 수신호 패턴에 대한 효과적인 인식을 위하여, 특징추출 단계와 패턴 분류 단계의 두 모듈로 이루어지는 복합형 신경망 모델을 제안한다. 특징추출 모듈을 위하여 고유의 특징표현 기법과 3차원 수용영역 구조의 CNN 모델을 제안한다. 이는 3차원 형식의 데이터로 표현되는 수신호 패턴으로부터 특징점의 공간적 변이뿐만 아니라 시간적 변이에 강인한 특징추출 기능을 제공한다. 패턴 분류 모듈에서는 효율적인 학습과 인식 기능을 위하여 수정된 구조의 GFMM 모델을 제안한다. 또한 학습패턴의 빈도를 고려한 활성화 특성과 학습 방법을 정의함으로써 기존의 GFMM 모델이 갖는 단점인 학습결과가 학습순서에 종속되는 특성과 비정상적 패턴 및 노이즈 패턴에 민감한 현상을 개선한다.

  • PDF

Learning performance of by the momentum and the bias learning method (모멘트와 바이어스 학습법에 의한 학습 성능)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • 근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

  • PDF

Dynamic Web Documents Recommendation System Using User-Profile (사용자 관심도를 반영한 동적 웹 문서 추천 시스템)

  • 김병진;최현우;김용성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.136-138
    • /
    • 2001
  • 인터넷 이용의 급속한 증가로 웹사이트의 증가뿐만 아니라 웹사이트 내의 웹 문서도 급속한 증가를 보이고 있다. 따라서 이를 효과적으로 사용자들에게 보여주기 위한 동적인 추천 시스템들이 많이 제안되고 있다. 그러나 이러한 추천 시스템들은 전체 사용자들의 브라우징 패턴이나 전체 웹 문서들의 연관성만을 고려하여 서비스를 제공함으로써 개인 사용자들의 관심도를 고려하지 않은 문제점이 있다. 이에 본 논문에서는 웹사이트에 남게되는 로그파일의 분석을 이용한 사용자별 브라우징 패턴과 웹 페이지의 액세스 타임의 측정을 통해, 사용자의 관심도를 측정한다. 그리고 이를 바탕으로 웹 문서들에 대해서 퍼지개념을 적용한 자동분류 알고리즘을 이용하여 사용자의 관심도가 반영된 선별된 웹 문서를 자동분류 및 선별하여 보여줄 수 있는 방안을 제시한다.

  • PDF

Malware Classification and Analysis of Automated Malware Analysis System (악성코드 자동 분석 시스템의 결과를 이용한 악성코드 분류 및 분석)

  • Na, Jaechan;Jo, Yeong-Hun;Youn, Jonghee M.
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.490-491
    • /
    • 2014
  • 쿠쿠 샌드박스(Cuckoo Sandbox)는 가상머신을 이용해 악성코드를 자동으로 동적 분석할 수 있는 도구이다. 우선 악성코드의 MD5값을 이용하여 VirusTotal을 이용해 종류를 분류하고, 쿠쿠 샌드박스로 악성코드 동적을 분석하여 결과파일을 이용해 악성코드에서 호출한 API들에 대한 정보를 추출하고, 다양한 종류별 악성코드 그룹에 대해서 API빈도를 종합하고, 또한 다른 종류군의 악성코드 그룹과 API 빈도를 비교해 특정 종류의 악성코드 그룹에 대한 특징적인 API를 찾아내어 향후 이런 특징 API들을 이용해 악성코드의 종류를 자동으로 판정하기 위한 방법을 제시한다.

A Study on Task Result Verification using Resource Clustering in Desktop Grids (데스크톱 그리드에서 자원 클러스터링을 이용한 작업 결과 검증에 관한 연구)

  • Kang, Jihun;Song, SungJin;Gil, Joon-Min
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.176-178
    • /
    • 2015
  • 데스크톱 그리드에서는 휘발성과 이질성과 같은 동적 특성을 갖는 자원의 자율적인 수행에 의해 얻어진 작업 결과의 검증이 중요하다. 이를 위해, 본 논문에서는 자원의 동적 특성을 신뢰도와 결과반환확률로 정의하고 k-means 클러스터링 알고리즘을 적용하여 자원들을 자원 그룹으로 분류하고, 분류된 자원 그룹에 따라 작업의 복제수를 결정하는 자원 클러스터링 기반의 컬과 검증 기법을 제안한다.