• 제목/요약/키워드: 동적분류

검색결과 536건 처리시간 0.029초

슈퍼스칼라 프로세서에서 정적 및 동적 분류를 사용한 혼합형 결과 간 예측기 (A Hybrid Value Predictor Using Static and Dynamic Classification in Superscalar Processors)

  • 김주익;박홍준;고광현;조영일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.682-684
    • /
    • 2002
  • 최근 여러 논문에서 실 데이터 종속을 제거하기 위하여 결과 값 예상 기법을 제안하였다. 결과 값 예상 기법 중 혼합형 결과 값 예측기는 다양한 패턴을 갖는 명령어를 모두 예측함으로써 높은 예상 정확도를 얻을 수 있지만 하나의 명령어가 여러 개의 예측기 테이블에 중복 저장되어 높은 하드웨어 비용을 요구한다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위하여 프로파일링으로 얻어진 정적 분류 정보를 사용하여, 명령어률 예상 정확도가 높은 예측기에만 할당하여 예상 테이블 크기를 감소 시켰다. 또한 동적으로 적절한 예측기를 선택하도록 함으로써 예상 정확도를 더욱 향상 시켰다. 본 논문에서는 SPECint95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 정적-동적 분류 정보를 모두 사용하였을 경우 87.9%, VHT 크기를 4K로 축소한 경우 87.5%로 비슷한 예상정확도를 얻으면서 예상 테이블의 크기는 50%로 감소하였다. 또한 실행 패턴의 유형 비율에 따라 각 예측기의 VHT를 구성한 경우 예상 테이블 크기를 25%로 줄일 수 있었다.

  • PDF

연관 웹 문서 분류와 사용자 브라우징 패턴을 이용한 동적 링킹 시스템 (Dynamic Linking System Using Related Web Documents Classification and Users' Browsing Patterns)

  • 박영규;김진수;김태용;이정현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.305-308
    • /
    • 2000
  • 웹사이트 설계자의 주관적 판단에 의한 정적 하이퍼텍스트 링킹은 모든 사용자들에게 동일한 링크를 제공한다는 단점을 가지고 있다. 이러한 문제점을 개선하고, 각 사용자들의 브라우징 패턴에 적합한 웹 문서들을 동적 링크로 제공해주기 위한 여러 동적 링킹 시스템들이 제안되었다. 그러나 대부분의 동적 링킹 시스템들은 사용자의 현재 브라우징 패턴과 가장 유사한 패턴 정보만을 이용해 동적 링크를 제공하기 때문에 연관성이 없는 웹 문서들에 대한 링크를 수시로 제공한다는 또 다른 문제를 지니고 있다. 본 논문에서는 데이터 마이닝의 한 응용 분야인 웹 마이닝 기법을 이용하여 웹 서버의 로그파일로부터 사용자들의 브라우징 패턴을 분석해내고, 다차원 데이터 집합에 적합한 Association Rule Hypergraph Partitioning(ARHP) 알고리즘을 이용하여 서로 연관성이 있는 웹 문서들을 분류한다. 사용자 브라우징 패턴 정보로부터 사용자에게 추천해줄 1차 링크 집합을 생성하고, 연관 웹 문서 정보를 이용하여 2차 링크 집합을 생성한다. 그리고 두 링크 집합에 공통으로 포함된 링크 집합만을 사용자에게 동적으로 추천해줌으로써 사용자가 보다 편리하고 정확하게 웹사이트를 브라우징 할 수 있도록 하는 동적 링킹 시스템을 제안한다.

  • PDF

자동 카테고리 생성과 동적 분류 체계를 사용한 이메일 분류 (Classification of e-mail Using Dynamic Category Hierarchy and Automatic category generation)

  • 안찬민;박상호;이주홍;최범기;박선
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.79-89
    • /
    • 2004
  • 이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.

  • PDF

GIS Database 구축을 위한 지형 요소의 지도화 (Geomorphological Mapping for Construction GIS Database of Geomorphic Elements)

  • 이민부;김남신;한균형
    • 대한지리학회지
    • /
    • 제36권2호
    • /
    • pp.81-92
    • /
    • 2001
  • 본 연구의 목적은 지형요소의 GIS Database 구축을 위한 전산화된 지형분류도 제작방안을 제시하는 것이다. 지형요소 전산화는 지형요소의 분류, 지형요소의 코드화, 범례화, 심볼의 제작, 마지막으로 지도화의 과정을 통하여 완성된다. 지형분류는 지형요소의 공간적 분포와 형태, 지형형성과 발달에 영향을 미치는 자연환경체계와 지형형성기구의 역할을 고려하며, 동적인 지형형성과정과 이 과정을 통해 물질관계를 파악할 수 있도록 하였다. 지형분류도는 1: 25,000 축적에 표현 가능한 지형요소를 나타낼 수 있도록 고려하였다. 지형요소들의 지도화 되었을 때는 시.공간적인 관계를 통해 지형환경체계가 인식되도록 하였다. 지형요소들은 GIS에서 Layer단위로 입력되어야 하기 때문에 Data Feature의 성격을 점.선.면으로 분류하여 지형요소의 형상을 범례로 만들었다. 지형요소 범례는 지형의 형태, 물질 그리고 성인을 고려하여 지형요소를 상징화할 수 있도록 설계하였다.

  • PDF

동적인 문서 여과에서 나이브 베이즈 분류기와 코사인 유사 계수의 성능 비교 (Comparative Between Naive Bayes Classifier and Cosine Similarity Coefficient in Dynamic Document Filtering)

  • 손기준;임수연;박성배;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.214-216
    • /
    • 2006
  • 온라인 정보가 증가함에 따라 많은 양의 정보 중에서 사용자가 원하는 정보를 정확하고 신속하게 찾아 주는 문서 여과의 중요성 또한 증가하고 있는 추세이다. 본 논문은 문서 여과 문제를 이진 문서 분류 문제로 보고, 나이브 베이즈 분류기를 동적인 문서 여과 목적으로 사용하였다. 이때 사용자가 자신의 관심 분야에 해당하는 주제를 제대로 여과 받기 위해서 학습 대상으로 삼아야 할 학습문서의 범위와 관련성 있는 문서를 제대로 여과 받기 위해서 체크해야 하는 관련성 표기 비율에 따른 분류기의 성능에 대하여 실험을 하였다. 코사인 유사계수를 이용한 여과 방법과의 성능도 비교 실험하였다. 실험 결과 나이브 베이즈 이진 분류기는 문서집합의 크기가 일정한 정도일 때 관련성 있는 문서가 모두 표기되지 않더라도 여과에는 큰 영향을 미치지 않음을 볼 수 있었다.

  • PDF

동적 필터 프루닝 기법을 이용한 심층 신경망 압축 (Dynamic Filter Pruning for Compression of Deep Neural Network.)

  • 조인천;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.675-679
    • /
    • 2020
  • 최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류 정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류 기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.

  • PDF

교육용 자원 저장소를 위한 의미적 분류 모델 (A Semantic Classification Model for Educational Resource Repositories)

  • 최명회;정동원
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권1호
    • /
    • pp.35-45
    • /
    • 2007
  • 이 논문에서는 교육용 저장소 자원의 체계적인 관리를 위한 분류 모델을 제안한다. 생성되는 자원들에 대한 체계적인 저장 및 관리, 정확한 검색, 그리고 활용성을 극대화하기 위해서는 정확한 분류 체계가 요구된다. 그러나 교육용 저장소 자원을 위한 분류 체계나 분류 모델에 대한 연구는 미비한 수준이다. 이는 교육 자원의 비효율적 관리, 부정확한 검색 및 낮은 활용성 등의 문제점을 초래한다. 상품 정보와 관련된 분야에서는 다양한 분류 체계에 대한 연구가 이루어져 왔다. 그러나 교육 자원 정보와 기존연구 분야의 정보는 서로 다른 특성을 지닌다. 따라서 교육용 저장소 내 자원 관리를 위한 분류 체계 및 분류 모델에 대한 연구가 요구된다. 교육 자원들에 대한 효율적이고 편리한 활용을 위해서는 여러 관점을 반영하는 분류 체계에 따라 자원들을 일관성 있게 유지 관리하여야 한다. 이 논문에서는 교육 자원의 체계적인 관리 및 활용성 향상을 위한 분류 모델을 제안한다. 즉, 교육용 저장소의 자원들에 대한 분류 체계를 다양한 관점에 따라 동적으로 유지할 수 있는 분류 모델을 제안한다. 이러한 목적을 위해 먼저 관련된 과학기술분야 분류 체계들을 바탕으로 구현 자원들에 적합한 분류 체계를 정의한다. 특히 정의된 분류 체계를 동적으로 유지 관리할 수 있는 분류 모델을 정의한다. 제안된 분류 체계 및 분류 모델은 보다 정확하고 체계적인 구현 자원에 대한 관리를 가능하게 하며 또한 활용의 용이성을 향상시킨다.

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류 (Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers)

  • 홍진혁;민준기;조웅근;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.886-895
    • /
    • 2006
  • 지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

동적 output neuron을 이용한 LVQ 기반 물체 분류 (Object Classification Based on LVQ with Dynamic output neuron)

  • 김헌기;조성원;김재민;이진형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.427-430
    • /
    • 2007
  • 기존의 LVQ(Learning Vector Quantization) 방법을 이용하여 물체를 분류하면 데이터의 학습이 빠르고 연산량이 적어 실시간으로 물체를 분류할 수 있는 장점이 있다. 하지만 데이터의 훈련시 output neuron의 개수를 정확히 예측할 수 없고 output neuron의 개수에 따라 물체를 분류하는 정확도가 매우 달라질 수 있다. 그러므로 본 논문에서는 output neuron의 개수를 데이터의 특성에 맞게 결정해주는 알고리즘을 제시한다. DLVQ(Dynamic Learning Vector Quantization) 알고리즘은 승자로 결정된 가중치 벡터의 부류가 샘플 데이터의 부류와 같으면 업데이트하고 다르면 새로운 가중치 벡터로 생성한다. 제한한 알고리즘의 가장 다른 부분은 미리 output neuron의 개수를 정하는 것이 아니라 훈련 과정에서 동적으로 output neuron의 개수를 생성하는 것이다. 그리고 클러터의 구분 방법을 제시하여 사람, 차, 클러터를 구분할 수 있다.

  • PDF

웹 환경에서 동적 GUI 제공을 위한 사용자 인터페이스 서버 설계 및 구현 (Design and Implemetation of User Interface Server for Dynamic GUI in Web Environment)

  • 박주영;강순주
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (3)
    • /
    • pp.225-227
    • /
    • 2000
  • 홈 네트워크의 발달과 함께 홈 네트워크를 감시하고 제어할 수 있는 사용자 인터페이스의 구현 또한 중요한 문제로 인식되고 있다. 본 논문에서 홈 네트워크의 정보들을 정적인 자료와 동적인 자료로 분류하여, 2개의 전송채널을 이용함으로써 동적인 자료의 실시간 응답 특성을 향상시킬 수 있는 GUI 서버를 제안하고, 각 디바이스의 감시/제어 모듈을 컴포넌트화 함으로써 동적 GUI 갱신과 디바이스의 추가/삭제에 따른 실시간 응답 특성을 향상시켰다.

  • PDF