• 제목/요약/키워드: 동위원소 희석법

검색결과 64건 처리시간 0.045초

동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용 (Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry)

  • 이승구;성낙훈;김용제
    • 암석학회지
    • /
    • 제10권3호
    • /
    • pp.190-201
    • /
    • 2001
  • 동위원소희석법은 스파이크(농축 동위원소)를 사용하여, 질량분석기에서 얻어지는 각 원소들의 동위원소 스펙트럼을 비교함으로써 정량화하는 방법으로서, 현재까지 개발된 정량분석 방법 중 가장 정확한 방법이다. 특히 열이온 질량분석기(Thermal Ion Mass Spectrometer)를 이용한 동위원소희석법은 현재까지 알려진 분석방법 중 가장 신뢰도가 높은 결과(1% 이내의 정도까지 가능함)를 얻을 수가 있다. 동위원소회석법에 의해 정량분석을 하고자 할 때, 가장 중요한 요인중의 하나로서 스파이크(농축 동위원소)의 선택이다. 회토류원소의 복합 스파이크용액을 만들 때의 개개의 회토류원소의 스파이크는 $^{138}$ $La^{142}$ , $Ce^{145}$ /Nd, $^{149}$ /, $Sm^{151}$ , $Sm^{151}$Eu, $^{157}$ Gd, $^{163}$ Dy, $^{167}$ Er, $^{171}$ , $Yb^{176}$ Lu를 많이 쓴다. 이 동위원소희석법에 의한 정량분석이 가장 유용하게 쓰여지고 있는 지구화학적 연구분야는 암석이나 광물의 연대를 측정하고자 할 때의 관심원소의 정량 및 자연계시료의 회토류 원소의 미세구조를 들 수가 있다. 특히 희토류원소의 테트라드 효과를 연구하고자 할 때, 이 동위원소희석법은 아주 효과적인 방법이다.

  • PDF

동위원소희석법과 열이온화 질량분석기에 의한 화강암질 대수층내 지하수의 희토류원소 분포도 및 그 의의

  • 이승구;김건한;김용제;성낙훈;아키마사마스다
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.59-62
    • /
    • 2003
  • 동위원소희석법에 의한 열이온화 질량분석법 (ID-TIMS)을 이용하여 지하수내 희토류원소의 함량을 측정하였다. 희토류원소의 분리에는 철공침법과 양이온교환수지에 의한 컬름분리법을 이용하였다. 경희토류(La-Eu)와 Gd, Dy, Er의 경우 수-수십 ppt의 수준에서 1%이내의 오차범위를 측정되어졌으며, 중희토류 중 Yb와 Lu은 정확도가 다소 떨어진 10% 전후에서 측정되었다. 지하수내 함량을 운석으로 규격화한 결과, 경희토류가 부화되었고 중희토류는 결핍되었으며 Eu의 이상은 거의 존재하지 않는다. 특히 경희토류에서는 M-type의 테트라드효과, 중희토류에서는 W-type의 테트라드효과가 관찰되었다. 이는 희토류원소의 수화수와 밀접한 관련이 있는 것으로 사료된다.

  • PDF

동위원소희석 질량분석법을 이용한 사용후핵연료 중 우라늄 동위원소 정량 (Determination of Uranium Isotopes in Spent Nuclear Fuels by Isotope Dilution Mass Spectrometry)

  • 김정석;전영신;손세철;박순달;김종구;김원호
    • 분석과학
    • /
    • 제16권6호
    • /
    • pp.450-457
    • /
    • 2003
  • 사용후핵연료 내 U 및 동위원소 정량분석을 동위원소 희석 질량분석법 (isotope dilution mass spectrometry, IDMS)으로 수행하였다. 시료는 산화우라늄 사용후핵연료 시료를 $HNO_3$(1+1) 또는 이 용액과 14 M $HNO_3-0.05M$ HF 혼합용액으로 용해한 후 막 거르게 ($1.2{\mu}m$)로 여과하여 준비하였다. 시료 및 스파이크를 첨가한 시료 중의 U은 AG lX8 음이온교환 수지관에서 0.1 M HCl 용액으로 용리하였다. 시료 중의 총 U 량과 성분 동위원소 ($^{234}U$, $^{235}U$, $^{236}U$$^{238}U$)의 조성은 $^{233}U$을 스파이크로 이용하는 동위원소 희석 질량분석법으로 정량하였다. 제조한 U-233 스파이크 용액은 천연 및 감손 U을 이용한 역동위원소 희석 질량분석법 (reverse isotope dilution mass spectrometry, R-IDMS)으로 표정하였다. 동위원소 희석 질량분석법에 의한 핵연료시료 중의 총 U 량 측정결과를 전위차 적정으로 측정한 결과와 비교하였을 때 0.34% 평균 상대오차 범위에서 일치하였다.

HPLC-ICP/MS에서 후 컬럼 동위원소 희석법의 기초적인 불확도 연구 (A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS)

  • 주민규;박용남
    • 분석과학
    • /
    • 제27권6호
    • /
    • pp.269-276
    • /
    • 2014
  • 후 컬럼 동위원소 희석법의 불확도를 HPLC-ICP/MS에서 Selenomethionine을 분석할 경우에 대하여 간단히 연구하였다. 주요하다고 생각한 오차의 원인으로 셀레늄 동위원소 용액의 농도와 흐름속도, 스파이크 용액과 시료 용액에서의 셀레늄 원자량, 그리고 스파이크된 시료용액에서 측정된 동위원소의 비를 선택하였다. 각 요인에 따른 불확도를 구하고 전체 농도의 불확도에 미치는 요인을 계산한 결과, 각각에 대하여 54.4%와 0.61%, 0.0072%와 0.018%, 그리고 45.0%를 얻었다. 가장 큰 요인은 스파이크 동위원소 용액의 농도이며 두 번째는 스파이크가 첨가된 시료용액에서의 동위원소비이었다. 스파이크 용액의 질량흐름속도와 원자량의 불활도는 크게 영향을 끼치지 못하였다. 계산된 전체불확도는 $126.30ng{\cdot}g^{-1}$ SeMet 표준용액에 대하여 $1.46ng{\cdot}g^{-1}$으로서 실험결과는 $127.09ng{\cdot}g^{-1}$을 얻었고 상대불확도는 1.20%이었다.

기체크로마토그래피/동위원소 희석 질량분석법을 이용한 토양 중 폴리브롬화 디페닐에테르의 분석법 (Determination of Polybrominated Diphenyl Ethers(PBDEs) in Soil using Gas Chromatography/Isotope Dilution Mass Spectrometry)

  • 나윤철;장윤석;김해동;홍종기
    • 분석과학
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2004
  • 본 연구에서는 토양중에 존재하는 폴리브롬화 디페닐에테르 (polybrominated diphenyl ethers, PBDEs)를 동위원소희석법을 이용한 기체크로마토그래피/질량분석기-선택이온검색법에 의해 검출하는 분석방법을 소개하였다. 토양 중 PBDEs는 속실렛 장치로 추출하고 실리카와 플로리실 흡착제를 이용한 고체상 추출법을 비교하였다. 정제 후 추출물은 기체크로마토그래피/질량분석기-선택이온검색방법으로 분석하였으며, 동위원소로 치환된 4종의 PBDEs를 내부표준물질로 이용한 동위원소 희석법으로 8종의 PBDEs를 정량하였다. 속실렛추출 후 플로리실과 실리카 카트리지를 통한 회수율은 각각 30.8~110.8%, 44.4~110.7%이었다. 이 분석법의 검출한계는 0.04~0.3 ng/g로 나타났다.

후 컬럼 동위원소 희석법을 적용한 HPLC-ICP/MS에서의 정량분석에서 내부 표준물을 이용한 정확도와 정밀도의 개선연구 (Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS)

  • 주민규;박명순;박용남
    • 분석과학
    • /
    • 제27권3호
    • /
    • pp.140-146
    • /
    • 2014
  • 후 컬럼 동위원소 희석법(PCID, post column isotope dilution)을 HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry)에 적용한 정량법에서 내부 표준물을 동시에 사용하여 정확도와 정밀도를 개선하였다. 전통적인 여러 정량법과 후 컬럼 동위원소 희석법을 비교하여 볼 때에 PCID의 경우에 컬럼내에서 발생하는 오차가 가장 큰 요인으로 작용하였음을 알 수 있었다. PCID에서 내부 표준물을 사용하여 컬럼내에서의 손실에 대한 오차를 효과적으로 보정하고 정확도와 정밀도를 개선할 수 있었다. 셀레늄 화학종인 SeMet을 시료로 사용하고 내부 표준물로 MeSecys 또는 $Se^{4+}$를 이용한 결과, 사용하지 않은 경우와 비교하면 상대오차는 각 각 31%와 13%에서 모두 1% 대로 낮아져 정확도가 크게 개선되었으며, 상대 표준편차는 5.1%와 6.9%에서 각각 1.5%와 0.2%로 정밀도 또한 크게 개선되었다. PCID에서 내부 표준물을 사용하였을 때의 정량분석법의 장점을 다른 분석법과 비교 토의하였다.

지하수와 강우내 희토류원소 분포도 및 지구화학적 의의

  • 이승구;김용제;김건한;성낙훈;박원배
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.210-212
    • /
    • 2003
  • 동위원소희석법에 의한 열이온화 질량분석법(ID-TIMS)을 이용하여 한국지질자원연구원과 에너지기술연구 원내 지하수와 강우 희토류원소의 함량을 측정/해석하였다. 분석결과를 토대로 지하수의 희토류원소 함량은 강우의 함량과 비교해 볼 때, 상대적으로 낮은 값을 보여준다. 그리고 굴착 심도가 더 깊은 한국지질자원연구원의 지하수내 희토류원소 함량이 한국에너지기술연구원의 지하수내 함량보다 더 낮은 값을 보여준다. 이는 강우가 지하로 흘러들어 가면서, 희토류원소와 대수층 구성암석과의 흡착반응에 의해 심부로 갈수록 함량이 낮아졌을 가능성이 크다고 판단된다. 뿐만 아니라, 강우의 경우, 희토류원소의 W형-테트라드 효과가 매우 현저하게 나타나고, 지하수에서는 M형과 W형의 테트라드 효과가 동시에 존재하는 특성이 강한데, 이는 희토류원소의 수화수 및 화강암 대수층과의 물-암석 반응에 의한 결과인 것으로 사료된다.

  • PDF