• Title/Summary/Keyword: 동시 시스템 최적화

Search Result 412, Processing Time 0.019 seconds

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

Facile [11C]PIB Synthesis Using an On-cartridge Methylation and Purification Showed Higher Specific Activity than Conventional Method Using Loop and High Performance Liquid Chromatography Purification (Loop와 HPLC Purification 방법보다 더 높은 비방사능을 보여주는 카트리지 Methylation과 Purification을 이용한 손쉬운 [ 11C]PIB 합성)

  • Lee, Yong-Seok;Cho, Yong-Hyun;Lee, Hong-Jae;Lee, Yun-Sang;Jeong, Jae Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • $[^{11}C]PIB$ synthesis has been performed by a loop-methylation and HPLC purification in our lab. However, this method is time-consuming and requires complicated systems. Thus, we developed an on-cartridge method which simplified the synthetic procedure and reduced time greatly by removing HPLC purification step. We compared 6 different cartridges and evaluated the $[^{11}C]PIB$ production yields and specific activities. $[^{11}C]MeOTf$ was synthesized by using TRACERlab FXC Pro and was transferred into the cartridge by blowing with helium gas for 3 min. To remove byproducts and impurities, cartridges were washed out by 20 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ solution (pH 5.1) and 10 mL of distilled water. And then, $[^{11}C]PIB$ was eluted by 5 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ into the collecting vial containing 10 mL saline. Among the 6 cartridges, only tC18 environmental cartridge could remove impurities and byproducts from $[^{11}C]PIB$ completely and showed higher specific activity than traditional HPLC purification method. This method took only 8 ~ 9 min from methylation to formulation. For the tC18 environmental cartridge and conventional HPLC loop methods, the radiochemical yields were $12.3{\pm}2.2%$ and $13.9{\pm}4.4%$, respectively, and the molar activities were $420.6{\pm}20.4GBq/{\mu}mol$ (n=3) and $78.7{\pm}39.7GBq/{\mu}mol$ (n=41), respectively. We successfully developed a facile on-cartridge methylation method for $[^{11}C]PIB$ synthesis which enabled the procedure more simple and rapid, and showed higher molar radio-activity than HPLC purification method.