• 제목/요약/키워드: 동시출현단어

검색결과 127건 처리시간 0.02초

텍스트마이닝을 활용한 아동, 청소년 대상 소비관련 연구 키워드 분석 (Keyword Analysis of Research on Consumption of Children and Adolescents Using Text Mining)

  • 진현정
    • 한국가정과교육학회지
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구는 텍스트마이닝 기법으로 최근 20년간 아동, 청소년 대상 소비 관련 연구의 주요어를 분석하여 소비 관련 연구의 동향을 파악하고자 하였다. 이를 위하여 KCI 등재/등재후보 학술지에 게재된 아동, 청소년의 소비관련 연구 869편의 주요어를 분석하였다. 빈도분석 결과 가장 빈도가 높은 주요어는 청소년, 청소년소비자, 소비자교육, 과시소비, 소비행동, 캐릭터, 경제교육, 윤리적소비 순으로 나타났다. 5년 단위로 주요어의 빈도를 분석한 결과, 2006년~2010년에는 소비자교육의 빈도가 월등하게 높아 이 시기에 소비자교육에 관한 연구가 많이 이루어졌음을 확인할 수 있었다. 2011년 이후 윤리적소비에 관한 연구가 활발해졌으며, 최근 5년 동안은 두드러지는 주요어가 없는 대신 다양한 주제로 연구가 이루어졌음을 알 수 있었다. TF-IDF 기준으로 주요어를 살펴보면 2001년~2005년 사이에는 환경과 인터넷 관련 단어가 주요 키워드였다. 2006년~2010년에는 미디어이용, 광고 교육, 인터넷아이템, 2011년~2015년에는 공정무역, 녹색성장, 녹색소비, 북한이탈청소년, 소셜미디어, 2016~2020년에는 텍스트마이닝, 지속가능발전교육, 메이커교육, 2015개정교육과정이 중요한 용어로 등장하였다. 토픽모델링 결과, 소비자교육, 대중매체/또래문화, 합리적 소비, 한류/문화산업, 소비자역량, 경제교육, 교수학습방법, 친환경/윤리적소비의 8개의 토픽이 도출되었다. 동시 출현 빈도를 활용한 네트워크 분석을 통해 아동, 청소년 관련 소비 연구에서 과시소비와 소비자교육이 중요한 연구주제임을 알 수 있었다.

COVID-19 관련 연구 동향에 대한 분석 - MEDLINE 등재 국내 의학 학술지를 중심으로 - (Analysis of Research Trends about COVID-19: Focusing on Medicine Journals of MEDLINE in Korea)

  • 서미진;이지수
    • 한국비블리아학회지
    • /
    • 제34권3호
    • /
    • pp.135-161
    • /
    • 2023
  • 본 연구는 국내 의학 학술지에 발행된 COVID-19(Coronavirus Disease 2019) 논문의 연구 동향을 분석하였다. 연구 대상은 MEDLINE에 등재된 의학 분야 학술지 25종으로 총 800건을 선정하였으며, 이를 대상으로 저자 분석, 빈도 분석, 주제 분석, 토픽모델링을 수행하였다. 연구 결과, 저자의 소속 기관은 국내 기관이 76.96%였으며, 국외 기관 저자의 비율은 소폭 감소하였다. 저자의 전공은 '내과학'(32.85%), '예방의학/직업환경의학'(16.23%), '방사선과학'(5.74%), '소아과학'(5.50%) 순이었으며, 공동 연구가 진행된 논문은 435건(54.38%)이었다. 저자 키워드는 'COVID19'(674번), 'SARSCoV2'(245번), 'Coronavirus'(81번), 'Vaccine'(80번) 등이 상위 키워드로 도출되었다. 전체 기간 등장한 단어는 'COVID19', 'SARSCoV2', 'Coronavirus', 'Korea', 'Pandemic', 'Mortality' 등 6개이다. MeSH 용어와 저자 키워드를 대상으로 동시 출현 네트워크 분석을 실시하였으며, 공통적으로 'covid-19', 'sars-cov-2', 'public health' 등의 중심 주제어가 도출되었다. 토픽모델링에서는 '백신 접종', 'COVID-19 발생 현황', '오미크론 변이 바이러스', '정신 건강, 방역 조치', '국내 감염의 전파 및 관리' 등 총 5가지의 토픽이 확인되었다. 이 연구를 통하여 '국제적 공중보건 비상사태'(Public Health Emergency of International Concern, PHEIC) 기간 동안 발행된 국내 COVID-19 논문의 연구 영역과 연도별 주요 키워드를 파악할 수 있었다.

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.

해외 목록학 연구동향 및 지적구조 분석 (A Study on Analysis of Research Trends and Intellectual Structure in the Overseas Cataloging Research)

  • 이지원;이성숙
    • 정보관리학회지
    • /
    • 제41권1호
    • /
    • pp.367-387
    • /
    • 2024
  • 본 연구는 새로운 표준과 규칙의 제정이 이루어지고 또한 향후 예고되어 있음으로 큰 변화의 과정을 거치고 있는 목록학에 있어 그동안 연구가 거의 없었던 해외 연구들의 최근 동향과 지적 구조를 규명하고자 하였다. 이를 위해 2010년 이후 14년간 발행된 논문 680편을 수집한 후, 이로부터 전처리를 거쳐 추출한 1,942개의 저자 키워드를 분석해보았다. 주요 분석 결과는 다음과 같다. 첫째, 해외 목록학 연구는 2017년 이후 주목할만한 성장세를 보이고 있었다. 둘째, 상위빈도 연구주제는 편목, 메타데이터, RDA, 대학도서관, 전거 제어, 링크드 데이터, FRBR, 목록, LCSH, 도서관, 온라인목록이었다. 셋째, 연구주제들은 크게 도서관 목록의 전통적인 부분과 관련된 것과 최근 들어 더욱 활발하게 논의가 진행되고 있는 주제인 전거제어와 협동편목, RDA, 링크드데이터와 관련된 2개의 군집으로 나눌 수 있었고, 이를 14개 소군집으로 세분하여 분석하였다. 넷째, 키워드 군집 14개의 성장지수와 표준 성과지수를 살펴본 결과, 하나의 군집을 제외하고는 학문 분야의 성장의 측면에서 모두 성장을 나타내는 수치를 보여주었다. 본 연구는 향후 국내 학계와 현장을 위한 목록의 발전 양상 예측하기 위한 기초자료 및 관련 교육에 유용하게 활용될 수 있다는 점에서 그 의의가 있다.

지진 유발 산지토사재해 관련 국외 연구동향 분석 (International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes)

  • 이상인;서정일;김진학;유동섭;서준표;김동엽;이창우
    • 한국산림과학회지
    • /
    • 제106권4호
    • /
    • pp.431-440
    • /
    • 2017
  • 2016년 9월 12일 발생한 경주지진(ML 5.8)과 2017년 11월 15일 발생한 포항지진($M_L$ 5.4)으로 전례없는 피해가 발생하였으며, 이에 지진 유발 산지토사재해 관련 국내외 기초자료의 조속한 구축과 심층적 분석이 필요한 실정이다. 이 연구에서는 국외의 지진 유발 산지토사재해에 관한 선행연구를 수집 및 분석한 후, VOSviewer 프로그램을 이용한 텍스트마이닝과 동시출현단어 분석을 통하여 연구주제에 따른 연구영역을 구별하였으며, 이후 각 연구영역별로 시 공간적인 연구동향을 파악하였다. 그 결과, 2005년 이후 지진 유발 산지토사재해 관련 연구가 급격히 증가하는 것으로 나타났으며, 이는 최근 중국, 대만 및 일본 등지에서 발생한 대규모 지진의 영향으로 사료된다. 국외 지진 유발 산지토사재해에 관한 연구영역은 (i) 재해발생의 메커니즘에 관한 연구영역, (ii) 재해발생에 영향을 미치는 강우인자에 관한 연구영역, (iii) 항공 위성사진을 이용한 지진 유발 산지토사재해 위험지 예측에 관한 연구영역, (iv) 재해발생 모델링을 통한 재해위험지도 작성에 관한 연구영역으로 구분되었으며, 이들 연구영역은 상호간에 깊은 연관성을 지니고 있는 것으로 판단된다. 이렇게 구분된 각 연구영역이 전체 연구논문 중에서 점유하고 있는 비율을 파악한 결과, 1987년 이래 누적 연구논문수가 총 연구논문수의 50%에 해당하는 연도를 중심으로 모든 연구영역의 연간 연구비율이 증가한 것으로 나타났으며, 특히 '항공 위성사진을 이용한 지진 유발 산지토사재해 위험지 예측'에 관한 연구영역의 연구비율이 상대적으로 크게 증가하는 것으로 나타났다. 이러한 활발한 연구성과는 최근 중국을 대상으로 한 연구논문이 급격히 증가하였기 때문으로 추정되며, 이외에 대만, 일본, 미국 등에서 수행된 연구논문들 역시 모든 연구영역에서 연구성과의 증가에 영향을 준 것으로 추정된다. 이러한 연구결과는 국내의 지진유발 산지토사재해 관련 미래 연구의 방향을 제시하기 위한 기초자료로서 활용될 수 있을 것으로 기대한다.

주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석 (Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network)

  • 신현보;김혜진
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.179-200
    • /
    • 2019
  • 구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.