• Title/Summary/Keyword: 동시조달수리부속

Search Result 9, Processing Time 0.025 seconds

Study to Optimize the Concurrent Spare Parts of Multiple Function Weapon System using Failure-Function Matrix (고장-기능 간 관계도를 이용한 다 기능 무기체계의 동시조달수리부속 최적화 연구)

  • Kim, Kyung-Rok;Choi, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5260-5266
    • /
    • 2015
  • To develop weapon system, Concurrent Spare Parts(CSP) is one of the important somethings in terms of Intergrated Logistics System(ILS). CSP is very important to improve the availability of weapon system, and various research about CSP are performed. However, most of the research does not consider the effects between sub-item's failure and weapon system's multiple function. In other words, if sub-item's failure does not seriously influence weapon system's specific function, the point, not necessarily to replace sub-item, is not considered. Therefore, the method to calculate CSP based on above consideration is written by failure-function matrix in this paper. The study follows the procedure below. First, it's to define the operation and maintenance procedure of weapon system. Second, failure-function matrix is developed. Third, simulation model is desinged by input data. Finally, The quantity of CSP is calculated by simulation and evolution strategy, meta-model. This study suggests new research direction to calculate CSP.

Optimization for Concurrent Spare Part with Simulation and Multiple Regression (시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화)

  • Kim, Kyung-Rok;Yong, Hwa-Young;Kwon, Ki-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.79-88
    • /
    • 2012
  • Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.

Method for determining the optimal number of concurrent spare parts under available budget constraint (예산제약 하에서의 동시조달수리부속의 적정소요 산출)

  • 김영호;전치혁
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.321-328
    • /
    • 2000
  • 본 연구는 새로운 장비체계 도입 시 초기 일정기간 동안 장비의 목표가용도 유지를 위해 필요한 동시조달수리부속(Concurrent Spare Parts)와 적정소요 산출에 관한 해법을 제시한다. 새로운 장비체계 도입 시 함께 보급되는 예비수리부속은 장비체계 운용에 중요한 역할을 한다. 따라서 장비체계가 주어진 임무를 수행하는 동시에 정상상태를 유지하기 위한 적정수준의 예비부속 확보가 필요하며 최소의 비용으로 장비의 가동률을 극대화 할 수 있도록 하여야 한다. 본 연구에서는 부품의 고장특성 및 수리능력을 고려한 고장분포함수를 바탕으로 각 부속별 중요도를 만족시키는 초기 수리부속 소요 결정모형과 해 산정기법을 제시하며 가용예산 제약에 따른 소요조정을 통해 최적의 예비부속 재고수준을 결정한다.

  • PDF

Determining the Proper Level of Concurrent Spare Parts under Budget Constraint (예산제약하에서의 동시조달수리부속의 적정소요 산출)

  • Kim, Young-Ho;Chong, Il-Gyo;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.14 no.3
    • /
    • pp.286-295
    • /
    • 2001
  • This paper addresses the problem of determining the proper level of concurrent spare parts(CSP) for a system consisting of multi-item parts under an available budget constraint. Initial provisioning of spare parts plays a major role in the acquisition of a new equipment system. Therefore, the proper level of spare parts should be on hand to maintain the availability of the system. This paper proposes a new CSP model and solution procedure that determines the proper level of spare parts satisfying the item priority and simultaneously available budget constraint.

  • PDF

Additional CSP calculation method considering Human Error (휴먼에러를 고려한 추가 CSP 산정 방안)

  • Baek, Sung-Il;Ha, Yun-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.759-767
    • /
    • 2021
  • Most weapons systems that are Force Integration are expensive equipment that reflects the latest technology, and the operation and maintenance cost is increasing continuously. Factors that efficiently operate and maintain these weapon systems include maintenance plans, economic costs, and repair part requirements. Among them, predicting the repair parts requirements during the life cycle in advance is an important way to increase operation and maintenance cost efficiency and operating availability. The start of requirement analysis for repair parts is a calculation of the CSP (CSP: Concurrent Spare parts, CSP hereafter) that is distributed when the weapon system is deployed. The CSP is an essential component of achieving the operating availability during this period because the weapon system aims to successfully perform a given operation mission without resupply for an initial set period. In the present study, the CSP calculation method was analyzed, reflecting the failure rate and operating time of items, but the analyzed CSP was aimed at preparing for technical failure, but in the initial operating environment, it is limited in coping with unexpected failures caused by human error. The failure is not included in the scope of free maintenance and is a serious factor in making the weapon system inoperable during the initial operation period. To prevent the inoperable status of a weapon system, CSP that considers human error is required in the initial operating environment, and the calculation criteria and measures are proposed.

A Study on Genetic Algorithm of Concurrent Spare Part Selection for Imported Weapon Systems (국외구매 무기체계에 대한 동시조달수리부속 선정 유전자 알고리즘 연구)

  • Cho, Hyun-Ki;Kim, Woo-Je
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.3
    • /
    • pp.164-175
    • /
    • 2010
  • In this study, we developed a genetic algorithm to find a near optimal solution of concurrent spare parts selection for the operational time period with limited information of weapon systems purchased from overseas. Through the analysis of time profiles related with system operations, we first define the optimization goal which maintains the expected system operating rate under the budget restrictions, and the number of failures and the lead time for each spare part are used to calculate the estimated total down time of the system. The genetic algorithm for CSP selection shows that the objective function minimizes the estimated total down time of systems with satisfying the restrictions. The method provided by this study can be applied to the generalized model of CSP selection for the systems purchased from overseas without provision of their full structure and adequate information.

Determining the Current Spare Parts Level in a Dynamic Environment (동적 환경에서의 동시조달 수리부속품 재고수준 결정)

  • 우제웅;강맹규
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.146-161
    • /
    • 1998
  • This article develops model of the nonstationary state behavior of the multiechelon spare parts provisioning systems. This study is concerned with a problem of determining the near optimal requirements level of the spare parts, especially Concurrent Spare Parts(CSP). CSP is supplied with the procurement of new equipment system, and is used to sustain the equipment without resupply during the initial coverage period. We consider this situation as a multiechelon inventory model with several bases and one depot. And we assume an equipment system which consists of many types of parts would grounded if one of the parts fail. Also this multiechelon CSP problem is considering the nonstationary poisson failure process and nonstationary exponential repair process in a dynamic environment. We develop an efficient computational procedure to find the near optimal number of spare parts minimizing the total expected cost, while achieving the required system availability. Finally we present a simple example of suggested method.

  • PDF

The Computing Model of Demand Quantity for Optimal Current Spare Parts considering the Operational Availability under Budget (예산제약 하에서 운용가용도를 고려한 최적 동시조달수리부속품 소요 산출 모델)

  • Na, In-Sung;Lee, Kye-Kyong;Park, Myeong-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.5
    • /
    • pp.167-180
    • /
    • 2006
  • This study expands limitation of OASIS(Optimal Allocation of Spares for Initial Supports) program, which calculates CSP(Concurrent Spare Part), not only availability but also cost, and developed the program enabling run in WINDOW OS. By considering multi-step repair and logistics support system, repairing capability at the time of deployment, and procurement period, this model is the first local model reflecting circumstances of the armed forces of the Republic of Korea. Furthermore, the programmed model was selected as the military standard software and has being essentially used for CSP calculation.

An Application to Multi-echelon Inventory Model : Using the Features of CSP (CSP품목 특성을 고려한 다단계 재고모형의 적용)

  • Ryoo, Yeon-Uk;Park, Myung-Sub
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.1
    • /
    • pp.113-132
    • /
    • 2006
  • This study suggested a readily applicable model to estimate the proper purchasing amount and the optimal CSP(Concurrent Spare Parts) inventory level based on a supporting echelon. For this model to be implemented, it is determined for studies about Multi-echelon Inventory Model to be divided by issues and utilized in the system Moreover, the model also includes the factors that are to be excluded for a reasearch purpose and to be simply assumed. Compared to previous studies, this model is to be considered the most possible factors, realistically designed, and practically used. It is claimed that the results of this model would raise an issue of improving traditional approaches in CSP acquisition and inventory management.