• 제목/요약/키워드: 동시적 위치 추정 및 지도작성

검색결과 12건 처리시간 0.034초

이동 로봇을 이용한 동시 위치 추정 및 지도 작성에 관한 실험 연구 (An Empirical Study on Simultaneous Localization And Mapping with Mobile Robots)

  • 김혜숙;김승연;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.291-294
    • /
    • 2012
  • 본 논문에서는 주어진 환경에 대한 정보가 충분하지 않은 상황에서 지능형 에이전트에게 요구되는 스스로의 위치를 파악하기 위해 로봇이 자신의 위치 추정과 동시에 주위 환경을 인식하여 주변 지도를 작성하는 방법을 제안한다. 이동 로봇의 위치를 추정하기 위해 센서 측정값을 통해 계산된 결과 값을 파티클 필터에 적용하며 로봇의 환경 지도 작성을 위해 점유 격자 지도 방법을 사용한다. 이 두 방법을 병합하여 동시적 위치 추정 및 지도 작성 문제에 적용하여 시스템을 설계 및 구현해보고 실험결과를 소개한다.

군집 로봇의 동시적 위치 추정 및 지도 작성 (Simultaneous Localization and Mapping For Swarm Robot)

  • 문현수;신상근;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.296-301
    • /
    • 2011
  • 본 논문에서는 군집 로봇의 동시적 위치 추정 및 지도 작성 시스템을 제안하였다. 로봇은 실험환경에서 주변 환경을 인식하기 위해 초음파센서와 비젼 센서를 이용하였다. 실험환경을 3개의 영역으로 분할하였고, 로봇은 각 영역에서 초음파 센서로 주변 환경에 대한 거리 정보를 측정하였고, SURF 알고리즘을 이용하여 비젼 센서로부터 입력받은 영상과 landmark의 특징점을 정합하여 랜드마크를 인식하였다. 제안된 방법은 센서값들에 대한 오차에 민감하지 않고 실험환경에 비교적 정확한 지도를 작성함으로써 응용 가능성을 증명하였다.

동시적 위치 추정 및 지도 작성에서 Variational Autoencoder 를 이용한 루프 폐쇄 검출 (Loop Closure Detection Using Variational Autoencoder in Simultaneous Localization and Mapping)

  • 신동원;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.250-253
    • /
    • 2017
  • 본 논문에서는 동시적 위치 추정 및 지도 작성 (simultaneous localization and mapping)에서 루프 폐쇄 검출을 딥러닝 방법의 일종인 variational autoencoder 를 이용하여 수행하는 방법에 대해 살펴본다. Autoencoder 는 비감독 학습 방법의 일종으로 입력 영상이 신경망을 통과하여 얻은 출력 영상과 동일하도록 신경망을 학습시키는 모델이다. 이 때 autoencoder 중간의 병목 지역을 통과함에도 불구하고 입력과 동일한 영상을 계산해야 하는 제약조건이 있기 때문에 이는 차원 축소나 데이터 추상화의 목적으로 많이 사용된다. 여기서 한 단계 더 발전된 variational autoencoder 는 기존의 autoencoder 가 가진 단점인 입력 변수의 분포와 잠재 변수의 분포 사이에 상관관계가 없다는 단점을 해결하기 위해 Kullback-Leibler divergence 를 활용한 손실 함수를 정의하여 사용했다. 실험결과에서는 루프 폐쇄 검출에서 많이 사용되는 City-Centre 와 New College 데이터 집합을 사용하여 평가하였으며 루프 폐쇄 검출의 결과는 정밀도와 재현율을 계산하여 나타냈다.

  • PDF

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현 (Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM)

  • 김유중;강준우;윤정빈;이유빈;백수황
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.687-694
    • /
    • 2022
  • 본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

수학적 형태학 처리를 통한 주행 중 과속 방지턱 자동 탐지 방안 (A Study on Automatic Detection of Speed Bump by using Mathematical Morphology Image Filters while Driving)

  • 주용진;함창학
    • 대한공간정보학회지
    • /
    • 제21권3호
    • /
    • pp.55-62
    • /
    • 2013
  • 본 연구에서는 전방위 카메라(Omni-directional Camera)를 이용하여 과속방지턱(Speed Bump)을 탐지하고 Vision Based Approach 통한 실시간 과속 방지턱 데이터의 갱신 방안을 제시하는 것을 목적으로 한다. 카메라 영상정보에서 과속 방지턱을 검출하기 위해 잡음을 제거하고 이를 구성하는 형상과 패턴으로 여겨지는 점들을 우선적으로 탐지하여야 한다. 과속방지턱은 일정한 폭과 규칙적인 형태를 유지하며 흰색과 노란색의 영역을 가지고 있음에 착안하여 침식과 팽창을 이용한 형태학적 연산과 HSV칼라 모델을 적용하여 도로상의 과속방지턱을 추출하였다. 카메라에서 거대한 이미지 데이터를 수집하여 대상 객체를 검출하고 GPS 위치 정보를 이용하였다. 마지막으로 동시적 위치추정 및 지도작성 (SLAMs :Simultaneous Localization And Mapping) 시스템을 구현하여 탐지알고리즘과 취득결과의 정확성을 평가하였다.

라이다 SLAM을 이용한 교내경비용 4족 로봇 (Four-legged walking robot for school security using Lidar SLAM)

  • 이기현;정창현;안승현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.740-742
    • /
    • 2022
  • 본 프로젝트에서는 다양한 지형에 구애받지 않고 전천후로 활동할 수 있는 로봇을 구현하기 위해 바퀴형 로봇 보다는 4족 보행 로봇을 채택하여 지형 극복에 더 유리하고 안정적인 자세 제어와 보행을 할 수 있는 동시에 LiDAR 센서와 카메라 모듈을 이용한 SLAM(동시적 위치 추정 및 지도작성)과 원격으로 사물과 사람들을 파악할 수 있는 원격조종 탐사로봇을 개발하고자 한다.

SLAM을 이용한 물류 운반 처리 로봇 (Robot for logistics transportation processing using SLAM)

  • 신수현;김하정;김유진;김도운;한동균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.872-873
    • /
    • 2023
  • 본 프로젝트는 LiDAR 센서를 통해서 지형 및 장애물을 파악하면서 모터를 이용하여 로봇의 이동과 물품 운반을 할 수 있게 한다. LiDAR 센서를 이용하여 물체를 인식하고, SLAM(동시적 위치 추정 및 지도작성)과 원격으로 사물과 사람들을 파악할 수 있으며, 모터 간의 통신을 통해 모터 제어를 이루어 지정 경로 내 자율주행을 가능케 한다.

이동로봇을 위한 $H_{\infty}$ 필터 기반의 강인한 동시 위치인식 및 지도작성 구현 기술 ($H_{\infty}$ Filter Based Robust Simultaneous Localization and Mapping for Mobile Robots)

  • 전서현;이건용;도낙주
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.55-60
    • /
    • 2011
  • 이동로봇의 동시 위치인식 및 지도작성 (Simultaneous Localization And Mapping, SLAM) 에서 가장 기본이 되는 알고리즘은 확장 칼만 필터 SLAM(Extended Kalman Filter SLAM, EKF-SLAM)이다. 하지만 칼만 필터를 사용할 때, 시스템 설계자는 외부 입력에 대한 시스템적 특성과 외부 노이즈의 확률적 모델을 알고 있어야 하나, 실제 환경에서는 이를 정확히 파악할 수 없는 한계가 있다. 이에, 칼만 필터를 불확실성이 심한 실제 환경에 적용할 경우 내부 변수의 변화에 민감하게 반응하거나, 필터의 수학적 일관성이 지켜지지 않거나 또는 부정확한 상태 변수값을 추정하기도 한다. 이에 비해 $H_{\infty}$ 필터는 외부 모델에 대한 상세한 정보가 없을지라도 강인하게 상태를 예측할 수 있다는 장점을 가지고 있다. 본 논문에서는 이러한 $H_{\infty}$ 필터의 특성이 이용로봇의 SLAM 알고리즘의 성능 향상에 도움이 될 것이라는 아이디어에 착안하여 $H_{\infty}$ 필터에 가번한 SLAM 알고리즘을 제안하고 이를 모의 실험에 적용해 보았다. 이를 통해 불확실성이 큰 환경에서는 제안된 알고리즘이 기존의 EKF-SLAM에 비해 다소 우수한 예측 성능을 보임을 확인할 수 있었다.

이동로봇을 위한 Sonar Salient 형상과 선 형상을 이용한 EKF 기반의 SLAM (EKF-based SLAM Using Sonar Salient Feature and Line Feature for Mobile Robots)

  • 허영진;임종환;이세진
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1174-1180
    • /
    • 2011
  • Not all line or point features capable of being extracted by sonar sensors from cluttered home environments are useful for simultaneous localization and mapping (SLAM) due to their ambiguity because it is difficult to determine the correspondence of line or point features with previously registered feature. Confused line and point features in cluttered environments leads to poor SLAM performance. We introduce a sonar feature structure suitable for a cluttered environment and the extended Kalman filter (EKF)-based SLAM scheme. The reliable line feature is expressed by its end points and engaged togather in EKF SLAM to overcome the geometric limits and maintain the map consistency. Experimental results demonstrate the validity and robustness of the proposed method.