• Title/Summary/Keyword: 동시소성

Search Result 240, Processing Time 0.027 seconds

Effect of Forced Cooling condition along with Welding on Welding Angular Distortion (용접 후면 강제냉각조건이 용접각변형에 미치는 영향)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2021-2026
    • /
    • 2013
  • In this study, the effect on the welding angle distortion was reviewed by carrying out a thermal elastic-plastic analysis while changing the cooling condition(width, length, and distance from weld torch to cooling torch) the back of the welding zone for the butt weld joint. The review results revealed that maximum 57% of reduction in the angle distortion was achieved when the distance between weld torch and cooling tip of 25mm, cooling length of 80mm, and cooling width of 30mm were maintained.

Creep Deformation Characteristics of Polycrystalline Ice and its Numerical Simulation in the Flow of Polar Glaciers (극지 빙하유동에 있어서 Polycrystalline Ice의 Creep 변형특성 수치 시뮬레이션)

  • 최경식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 1990
  • Various types of ice distribution under low temperature greatly influence the environment of the Arctic and Antarctic Oceans. To understand fundamentals of ice properties such as Polar glaciers, icebergs and sea ice, this study focuses on the material behaviors and failure mechanisms of polycrystalline ice. Utilizing the continuum damage theory, a three-dimensional constitutive model to describe creep deformation characteristics in the glacial flow is developed in consideration of micro-cracking as the major physical process of ice deformation. The numerical model is compared with the published experimental data especially in uniaxial constant stress creep tests. The model can simulate primary and secondary creeps as well as tertiary creep characteristics due to the microcrack accumulation.

  • PDF

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF

Co-firing of Dielectric and Electrode with Conventional and Microwave Heating in Plasma Display Panel (전형적인 열처리와 마이크로웨이브 열처리에 따른 PDP용 전극과 투명 유전체의 동시 소성)

  • Hwang, Seong-Jin;Veronesi, Paolo;Leonelli, Cristina;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.463-463
    • /
    • 2008
  • The glass frit has been used in transparent dielectric, barrier rib and electrode of PDP (Plasma display panel). In PDP fabrication, the firing temperature of glass frit is normally 550~$580^{\circ}C$ with conventional heating. However, there are a problem that silver in electrode is diffused throughout the transparent dielectric. For inhibiting the Ag diffusion we considered use of the microwave heating. We investigated firing of glass frit compared between conventional and microwave heating. After firing by two types of heating, the diffusion of silver is determined using a optical microscope and UV-spectrometer. Based on the our results, the microwave heating should be a candidate to heating source for high efficacy in PDP.

  • PDF

Kiln for Production of Light Weight Aggregate from Coal Fly Ash (Coal Fly Ash로부터 경량 골재 생산을 위한 소성장치)

  • Choi, Young-Yoon;Nam, Chul-Woo;Kim, Byoung-Gyu;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.61-67
    • /
    • 2007
  • In viewpoints of environmental and resource conservation, it is desirable to utilize fly ash generated from domestic coal power stations as light constructive material. Furthermore, the demand of light constructive materials has been increased as many building tend to become highly multistory buildings. In demonstration of converting fly ash to light constructive materials, the Dwight-Lloyd kiln of which the operation is relatively easy and the reliability very high has been informed to be only commercialized plant over the world. In this review, Dwight-Lloyd kiln plant operated at Oomura coal power station in Japan is explained. Circular grate kiln, Shaft kiln, Rotary kiln plants that are under developed is also introduced.

Properties of Low Temperature Cofired Ceramics Sheets with Binder Content and Laminated Pressure (바인더 함량 및 적층압력 변화에 따른 LTCC 시트 특성)

  • You, Jung-Hun;Yeo, Dong-Hun;Lee, Joo-Sung;Nam, Joong-Hee;Wang, Jong-Hoe;Yoon, Ho-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.278-279
    • /
    • 2006
  • 저온동시소성 다층세라믹스 시트 제조시 바인더 함량과 압력 변화에 따른 적층체의 그린밀도, 적층밀도, 바인더 burn out 후 그린밀도, 소결밀도를 고찰하였다. 바인더 함량이 증가함에 따라 slurrly의 유변학적 변화는 그린시트의 유동성 및 충진율을 변화시켜 그린시트의 밀도에 영향을 주었다. 적층 압력을 5~50MPa로 변화시켰을 때 바인더 함량이 12%로 가장 많은 시트의 경우 적층 후 시트의 밀도는 상대적으로 높은 밀도값을 나타내었으나, 바인더 burn out 후에는 상대적으로 낮은 밀도값을 나타내었다. 바인더 함량 변화에 따른 소결 밀도값은 큰 차이를 보이지 않았다.

  • PDF

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

Effect of surface treatmet on the shear bond strength of a zirconia core to veneering ceramic (지르코니아 코어의 표면처리가 비니어링 세라믹과의 전단결합강도에 미치는 영향)

  • Choi, Mi-Sun;Kim, Young-Soo;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.199-205
    • /
    • 2009
  • Purpose: The purpose of this research was to evaluate the shear bond strength between zirconia core and veneer ceramic after surface treatment. Material and methods: Zirconia cores(N=40, n=10, $10mm{\times}10mm{\times}3mm$) were fabricated according to the manufacturers' instructions and ultrasonically cleaned. The veneering ceramics(thickness 3 mm) were built and fired onto the zirconia core materials. Four groups of specimens with different surface treatment were prepared. Group I: without any pre-treatment, Group II: treated with sandblasting, Group III: treated with liner, Group IV: treated with sandblasting and liner. The shear bond strength was tested in a universal testing machine. Data were compared with an ANOVA and $Scheff{\acute{e}}$ post hoc test(P=.05). Results: The shear bond strength of group VI was significantly higher than the other groups. Conclusion: Both mechanically and chemically treated simultaneously on zirconia core surface influenced the shear bond strength between the core and veneering ceramic in all-ceramic systems.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

A Study on the Assessment of Safety Factor of Tunnels (터널의 안전율 평가 기법에 관한 연구)

  • 박종원;박연준;유광호;이상돈
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.327-338
    • /
    • 2004
  • The purpose of this research is to establish a concept of the factor of safety of tunnels which is a quantitative estimate of the stability of tunnels. Based on this concept, a numerical technique which calculates the factor of safety of tunnels was developed. To obtain the safety factor of a tunnel, the strength reduction technique in which a series of analyses are repeated with reduced ground strength until the tunnel collapses were employed. With this technique, the failure plane, as well as the factor of safety, can be obtained without prescribing the trial failure plane. Analyses were conducted with FLA $C^{2D}$(ver3.3), a geotechnical analysis program which is based on the finite difference method. From the result, the location of plastic zones, the maximum convergence and the maximum stress generated in the support system were also analyzed. The result shows that factors of safety are higher for the 1st and 2nd rock classes, and lower for the lower rock classes. Furthermore, factor of safety is higher when $K_{0}$ =0.5 compared to at in case of $K_{0}$ =2.0. Through this research, it is found that the factor of safety defined in this research can be used as a good quantitative index representing the stability of tunnels. Also, close examination of the results can help adjustment of the quantity and location of additional supports.s.