• Title/Summary/Keyword: 동슬래그 콘크리트

Search Result 63, Processing Time 0.029 seconds

A Study on the Effect of strength improvement and $CO_2$ reduction by using Eco-concrete in construction site (에코콘크리트 현장 적용에 따른 강도 상승 효과 및 이산화탄소 절감 효과에 관한 연구)

  • Kim, Jeong-Jin;Hwang, Yin-Seong;Lee, Sang-Hyun;We, Joon-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Blast furnance slag cement is a cement manufactured with using industrial by-product and it can reduce $CO_2$ by replacing cement when same uit volume concrete is produced. But Blast furnance slag has a short point that early strength of concrete is not good in winter season and it can be used. So, in this study, as long as replacement ratio of Blast furnance slag to original portland cement is under 30%, developed cement, ecoment, improve early strength of concrete and it applied to constructoin site. As a result, it improves 37% in terms of 1-day strength, it reduces 6.7% in terms of $CO_2$ emission when $1m^3$ concrete was produced. The importance and applicability of study wll be expected to increase cosidering global effort and green growth-strategy in country for reducing greenhouse gases.

  • PDF

A Study on Mortar Strength as Slag Sand Characteristics (슬래그 모래특성에 따른 모르터의 강도에 관한 연구)

  • 박정우;백민수;김성식;임남기;정재동;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.383-388
    • /
    • 2000
  • In these days, there are out of natural sands in the construction field. It is required that development of substitute material for natural material. The blast-furnace slag could be a good alternative material in this situation. It can help resource recycling and the protection of environment. This study presents that the strength properties of mortar using air-cooled blast-furnace slag sand and water-cooled blast-furnace slag sand. The mixing design of this study have a few factors, three type of unit water, four types of W/C, five types of substitution rate. When air-cooled furnace slag sand used in mortar, as substitution rate is higher, 3, 7-days compression strength and flexural strength are going up. But, in case of water-cooled furnace slag sand mortar, strengths are going down.

  • PDF

The Study on Properties of Mortar with Copper Smelting Slag (동제련 슬래그를 혼입한 모르타르의 강도 특성 연구)

  • Park, Cho-Bum;Ji, Suk-Won;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

Influence of Blending Materials on C1- Diffusion and pH of Pore Solution in Cement Pastes (시멘트 경화체 중에서의 C1-의 확산과 세공용액의 pH에 미치는 혼화재의 영향)

  • 김남중;최상흘;정재동;한기성
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.97-106
    • /
    • 1992
  • Apparent diffusion coefficients of Cl- ions through hardened cement pastes(HCP), which were partly subs¬tituted blast furnace slag, fly ash and silicafume for ordinary Portland cement, were determined. Also. Cl- and OW concentration of pore solutions which were extracted from HCP and the capacities of the HCP to bind CI were determined. Diffusion coefficients of Cl- ions through HCP were increased with water cement ratio(WfC), but decreased with addition of the blending materials. On the contrary, Cl- and OH concentration of the pore solutions were reduced by adding the blending materials.

기술연구 - Clinker free 콘크리트의 기초성상에 관한 연구

  • Lee, Jong-Yeol
    • Cement
    • /
    • s.192
    • /
    • pp.39-47
    • /
    • 2011
  • 최근 온실가스 감축과 기후변화 그리고 녹색성장에 대한 관심증대와 더불어 시멘트 분야의 연구 생산분야는 천연자원 사용량을 줄이고, 소성공정을 도입하지 않은 새로운 개념의 무기바인더가 다시 고개를 들고 있다. 다른 용어로는 비소성, 무시멘트 등으로 표현되기도 하는데, 광의의 개념으로 보면 알칼리 활성화제를 사용한 비소성 무기결합재인 지오폴리머가 바로 그것이다. 지오폴리머 결합재는 1957년 우크라이나의 토목공학회에서 개발한 알칼리 활성 슬래그시멘트에 기원을 두고 있고, 1970년대 말 프랑스의 다비도비치에 의해 지오폴리머라는 용어가 처음 사용되기 시작했다. 알칼리 활성 무기결합재(Alkali-activated inorganic binder)의 정의이다. Alkali-activated inorganic binder는 원래는 결합능력이 없던 재료에 대해서 Alkali-activating 용액을 첨가했을 때, 시멘트처럼 결합능력을 가지게 되는 모든 종류의 결합시스템을 말한다. 국내에도 이미 2000년 초부터 지오폴리머의 개념을 도입한 제품이 상업화되어 오랫동안 품질검증을 거쳐 안정성이 확인되고 있다. 최근에 다시 전남대가 그 동안의 연구성과를 발 빠르게 중소기업에 기술 이전하여 소위 무시멘트 시대에 진입하는 분위기이다. 지난 9월 동아에스텍(주)과 조인트벤처 설립을 위해 손을 잡았고, 사업화가 곧 진행될 것으로 보인다. 이를 계기로 국내에도 무시멘트회사가 본격적으로 등장하게 된 것이다. 따라서 본 고는 무시멘트의 개념을 잘 표현한 문헌으로 일본콘크리트공학 연차논문집, 2010년 1월호를 번역 요약 발췌한 것이다.

  • PDF

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

Carbonation Evaluation After CO2 Curing of Concrete Bricks Using Industrial by-products (산업부산물을 사용한 콘크리트 벽돌의 CO2 양생 후 탄산화 평가 )

  • Hoon Moon;Namkon Lee;Jung-Jun Park;Gum-Sung Ryu;Gi-Joon Park;Indong Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.373-380
    • /
    • 2023
  • This study investigated the carbonation of concrete brick cured in a CO2 environment for the utilization of CO2 captured in power plants. Concrete brick specimens were produced with electric arc furnace reducing slag (ERS) and electric arc furnace oxidizing slag (EOS), and cured for 3 days in a CO2 chamber with a concentration of 20 % or in a constant temperature and humidity chamber. The weight change, compressive strength, flexural strength and carbonation depth of concrete bricks were measured. From the results, it was found that when subjected to CO2 curing, CO2 was absorbed at the level of 2.4 % of the weight of the specimen. The specimen incorporating ERS showed the highest carbonation depth, and satisfied KS F4004 standards for the concrete brick. Therefore, it is expected that the captured CO2 can be utilized in the CO2 curing process of concrete brick.

Effect of Recycled Aggregate Substitution to Zero-cement Concrete which uses Blast Furnace Slag Power (고로슬래그 미분말 사용 무 시멘트 콘크리트의 품질에 미치는 순환골재 치환율의 영향)

  • Feng, Hai-Dong;Cho, Man-Gi;Son, Ho-Jung;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.287-288
    • /
    • 2012
  • In this study, Analyzed the effect of the change in RFA and RCA substitution rate on the concrete containing BS bonding materials but no cement. The findings are as follows. First, the fresh concrete has less slump value and air contents as more RFA and RCA is used. In case of hardened concrete, as more RFA and RCA are used, the higher the compressive strength of concrete becomes. Especially, the compressive strength of concrete which used recycled aggregates only is found to be 2.2 times as high as that of concrete using natural fine and coarse aggregates only. But if the concrete is to be used as the structural concrete having the compressive strength of 13.8 MPa, the alkaline materials and some cement are required to be added.

  • PDF

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part I - 40MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part I - 40MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.321-324
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results show that $30.0{\sim}32.5%$ of W/B, $155㎏/m^3$ of unit water and FA10+SP10 is best properties for early strength of concrete.

  • PDF