• Title/Summary/Keyword: 동력해석

Search Result 946, Processing Time 0.022 seconds

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.

Estimation of Water Quality Variation in Sewer Network using MOUSE TRAP Model (MOUSE TRAP 모델을 이용한 하수관거내 수질변화 예측)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.743-752
    • /
    • 2009
  • One of the major problems associated with operation of domestic sewer lines involves hydraulic problems such as insufficient conveyance capacity, exceeding maximum velocity, and deficiency of minimum velocity. It has also been pointed out that influent concentration lower than design concentration of pollutants, which is mainly caused by unidentified inflow and infiltration, degrades the operational efficiency of many sewage treatment plants (STPs). A computer-added analysis method supporting a coupled simulation of sewage quality and quantity is essentially required to evaluate the status of existing STPs and to improve their efficiency by a proper sewer rehabilitation work. In this study, dynamic water quality simulations were conducted using MOUSE TRAP to investigate the principal parameters that governs the changes of BOD, ${NH_4}^+$, and ${PO_4}^{3-}$3- concentrations within the sewer networks based on data acquired through on-site and laboratory measurements. The BOD, ${NH_4}^+$ and ${PO_4}^{3-}$3- concentrations estimated by MOUSE TRAP was lower than theoretical pollution loads because of sedimentation and decomposition in the sewer. The results revealed that sedimentation is a most important factor than other biological reactions in decreasing pollutant load in the sewers of C-city. The sensitivity analysis of parameters pertaining to water quality changes indicated that the effect of the BOD decay rate, the initial DO concentration, the half-saturation coefficient of dissolved BOD, and the initial sediment depth is marginal. However, the influence of settling rate and temperature is relatively high because sedimentation and precipitation, rather than biological degradation, are dominant processes that affect water quality in the study sewer systems.

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

An analysis on the characteristics of superheater organization of ORC system for marine waste heat recovery system(WHRS) (선박폐열회수(WHRS) ORC 시스템의 과열기 구성에 따른 특성 해석)

  • Kim, Jong-Kwon;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • This research designed Waste Heat Recovery System(WHRS) generation system of 250kW whose working fluid is R-245fa and studied on cycle characteristics by superheater organization. It simulated two conditions; series connection and parallel connection between superheater and evaporator. In simulation of series connection of superheater and evaporator, output of 4.7% could be improved because of the increase of enthalpy by overheating of working fluid. When setting 250kW for target output, cycle flux could be reduced by 4.1%. When setting 250kW as a target output of cycle In parallel connection simulation of superheater and evaporator, cycle flux was reduced as flux of heat source fluid for superheater was increased. So, the maximum 7.9% of working fluid pump's electric power was reduced and there was no big change in cycle efficiency and net efficiency by flux ratio.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

Analysis of two-stage Continuous Culture System by Transient Response of Single-stage Continuous Culture System (일단 연속 생물반응기의 과도상태 거동을 이용한 이단 연속 생물반응기의 해석)

  • 박성훈;공인수
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.308-316
    • /
    • 1992
  • Two-stage continuous culture system has been studied intensively to maximize the productivity of a cloned gene product in unstable recombinant microorganism. As an effort to optimize the two-stage process, transient behavior of the second-stage was studied theoretically as well as experimentally using Escherichia coli Kl2$\delta$Hl$\delta$trp. A mathematical model describing the transient response to a step change in dilution rate was developed based on the assumption that the adaptation rate of cell growth is proportional to the available growth potential, which is defined as the difference in dilution rates between before and after shift-up. The kinetic parameters appearing in the model equations were the dimensionless step increase in growth rate($\alpha$) and the adaptation rate constant(k). These parameters were evaluated for various dilution rates and temperatures by washout method. This relatively simple adaptation model could predict the specific growth rate of the second-stage successfully. Advantage and disadvantage of the proposed model are also discussed.

  • PDF

An Experimental Study on the Propulsive Characteristics of Sculls (선미노(船尾櫓)의 추력발생기구(推力發生機構) 규명(糾明)을 위한 실험적(實驗的) 연구(硏究))

  • H.,Kim;B.K.,Lee;C.K.,Rheem
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 1989
  • The geometrical characteristics of sculls which are in use for propulsion of Korean traditional row boats were briefly surveyed. A typical dimension of the scull was selected and prototype for test was prepared. Angular displacements and the force components at handle and pivoting point were measured when the scull was operated in moored condition by skilled fisherman. Time histories and trajectories of motion were analyzed with the force generated at the scull blade. It was found out that the thrust of the scull was generated mainly by reaction force. The direction of improvement for better rowing motion could be also suggested. Continued study on this topic in a self-propulsion condition will provide us another interesting informations and prepare a possibility of application in evaluating rowing motion of oar.

  • PDF

Dispersion of Organic Phase by Agitation in a n-Hexane/p-TSA Aqueous Solution System (n-헥산/p-TSA 수용액계에서 교반에 의한 유기상의 분산)

  • Kim, Tae-Ok;Chun, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.209-215
    • /
    • 1991
  • The effect of agitation on the dispersion of organic phase was investigated in an immiscible liquid system (n-hexane/40 wt % p-TSA aqueous solution). Four different types of six-bladed turbine impellers were used : a flat blade type and three screen blade types. The experimental results showed that the extent of dispersion of organic phase at the same agitation speed was decreased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. Otherwise, it was increased with increasing the concentration of TBA as a surfactant agent and with decreasing volume fraction of organic phase. Also, the minimum agitation speed for a complete dispersion was increased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. However, the minimum power consumption did not vary significantly. In this condition, the relationship between Power number and Reynolds number was expressed as $N_p=a\;N_{Re}{^b}$, where the values of constant a and constant b were ranged 2200~4100 and -0.69~-0.63 respectively.

  • PDF

Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coal Based Granular Activated Carbon (석탄계 입상 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2015
  • Adsorption of brilliant blue FCF dye using coal based the granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Temkin models. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n = 0.129~0.212), this process could be employed as an effective treatment method. Adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could describe well the adsorption kinetics. The negative Gibbs free energy value (-4.81~-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicated that the adsorption was a spontaneous and endothermic process.