• Title/Summary/Keyword: 동기모터

Search Result 210, Processing Time 0.033 seconds

Development of an AVR MCU-based Solar Tracker (AVR 마이크로 컨트롤러 기반의 태양추적 장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Hyun, Joon-Ho;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • An embedded two-axis solar tracking system was developed by using AVR micro controller for enhancing solar energy utilization. The system consists of an Atmega128 micro controller, two step motors, two step drive modules, CdS sensors, GPS module and other accessories needed for functional stability. This system is controlled by both an astronomical method and an optical method. Initial operation is performed by the result from the astronomical method, which is followed by the fine controlled operation using the signals from Cds sensors. The GPS sensor generates UTC, longitude and latitude data where the solar tracker is installed. A database of solar altitude, azimuth, and sunrise and sunset times is provided by UART (Universal Asynchronous Receiver/Transmitter).

Xenomai-based Embedded Controller for High-Precision, Synchronized Motion Applications (고정밀 동기 모션 제어 응용을 위한 Xenomai 기반 임베디드 제어기)

  • Kim, Chaerin;Kim, Ikhwan;Kim, Taehyoun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.173-182
    • /
    • 2015
  • Motion control systems are widely deployed in various industrial automation processes. The motion controller, which is a key element of motion control systems, has stringent real-time constraints. The controller must provide a short and deterministic control message transmission cycle, and minimize the actuation deviation among motor drives. To meet these requirements, hardware-based proprietary controllers have been prevalent. However, since it is becoming difficult for such an approach to meet increasing needs of system interoperability and scalability, nowadays, software-based universal motion controllers are regarded as their substitutes. Recently, embedded motion controller solutions are gaining attention due to low cost and relatively high performance. In this paper, we designed and implemented an embedded motion controller on an ARM-based evaluation board by using Xenomai real-time kernel and other open source software components. We also measured and analyzed the performance of our embedded controller under a realistic test-bed environment. The experimental results show that our embedded motion controller can provide relatively deterministic performance with synchronized control of three motor axis at 2 ms control cycle.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

Algorithm for Switch Open Fault Detection of Asymmetric 6-phase PMSM Based on Stationary Reference Frame dq-axis Currents (비대칭 6상 영구자석 동기 전동기의 정지 좌표계 DQ축 전류를 이용한 스위치 개방 고장 검출 기법)

  • Lee, Won-Seok;Kim, Han-Eol;Hwang, Seon-Hwan;Lee, Ki-Chang;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.265-270
    • /
    • 2022
  • This paper proposes the detection algorithm for switch open fault of asymmetric 6-phase PMSM based on stationary reference frame dq-axis currents. In this paper, target motor has an asymmetric structure in which two upper three windings have an electrical phase difference of 30° and a neutral point is separated. As a result, dual 3-phase PWM inverters and the detection techniques due to open failures of switch are definitely required. In this paper, the dual dq-axis current control method is used for driving the asymmetric 6-phase PMSM and the open fault switch should be detected by using variable all pass filter and low pass filter in order to detect the current amplitude. The effectiveness and usefulness of the proposed method is verified by several experiments.

Study of Speed Profile for Dynamic Stability of EOTS (EOTS의 동적 안정성을 위한 속도 프로파일에 대한 연구)

  • Gyu-Chan Lee;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.919-925
    • /
    • 2023
  • Modern drones are equipped with miniaturized mission equipment capable of performing various tasks such as surveillance and reconnaissance. Consequently, these mission equipment are exposed to disturbances like wind loads and motor rotations, which can lead to instability in the operation of the Electro-Optical Targeting System (EOTS). Specifically, simple step inputs for changing the line of sight in EOTS can cause abrupt changes in speed, inducing overshoot and potentially creating instability along with other disturbances. To address this, a velocity profile was designed so that the angular velocity moves in a trapezoidal shape when changing the EOTS line of sight. A Double-loop controller was designed to apply this profile as an input to the external loop receiving position feedback. The system's stability was then compared, and the velocity profile was optimized within a stable range by varying maximum speed and acceleration.

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

Development of Real-time based Hardware-In-Loop Simulator for performance evaluation of wind turbine control system (풍력발전기 제어시스템 성능평가를 위한 실시간 처리 기반의 Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Ryu, Kyung-Sang;Kim, Byungki;Jang, Moon-Seok;Ko, Hee-Sang;Yoo, Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.794-805
    • /
    • 2017
  • This paper proposes a Hardware-In-Loop(HIL) Simulator for a Wind Turbine and an operational control algorithm to evaluate the performance of a wind turbine control system. It provides not only for the validation of the control logics, safety functions and H/W failure, but also for the high reliability of the wind turbines (by reducing/and the reduction of the operating expense(OPEX) through performance evaluation tests with complex scenarios. On the other hand, the proposed simulator uses MATLAB, CODER, and the PLC library to operate in synchronization with the hardware, and a real-time processing-based wind turbine module including a dynamic model and control system, wind module, grid module and host PC to manage the HIL-simulator. Several experiments were carried out under the above concept to verify the effectiveness of the proposed WT HIL-simulator.

Production of Transgenic Porcine haboring the Human Erythropoietin(EPO) Gene (사람 조혈인자 유전자(Human Erythropoietin Gene)를 도입한 형질전환돼지 생산)

  • 이연근;박진기;민관식;이창현;성환후;전익수;임석기;양병철;임기순
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.95-104
    • /
    • 2002
  • This study was performed during the four seasons for the production of transgenic pigs containing the human erythropoietin(hEPO) transgene. Purebred Landrace gilts and sows approximately 8∼15 months of age (n=42) were used fur the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Synchronization and superovulation procedures were used that cyclic gilts were synchronized with 20mg altrenogest (ALT) per day for 9days after PG600 administration followed by superovulation with 1500IU pregnant mares serum gonadotropin (PMSG) and 500IU human chorionic gonadotrophin (hCG). Preparation of recombinant gene for microinjection is mice whey acidic protein promoter (mWAP) linked to human erythropoietin (hEPO) gene. After hormone treatment, 650 embryos were collected from 23 donors and 83.1% (540/650) embryos were in 1-cell stage which can be visualized the pronuclei for DNA microinjection. A total of 543 DNA microinjected embryos fiom donors were transferred to 19 synchronized recipients, seven of them maintained pregnancy and delivered 47 piglets. One of the 47 offsprings were determined to have transgene by PCR analysis. The overall rate of transgenic production was 2.13% (tansgenic/offspring). This study provides the success and useful information regarding production of transgenic pig for bioreactor research.

Development of a Microspot Spectroscopic Ellipsometer Compatible with Atomic Force Microscope (원자힘 현미경 융합형 마이크로스폿 분광타원계 개발)

  • In, Sun Ja;Lee, Min Ho;Cho, Sung Yong;Hong, Jun Seon;Baek, In Ho;Kwon, Yong Hyun;Yoon, Hee Kyu;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.201-209
    • /
    • 2022
  • The previously developed microspot spectroscopic ellipsometer (SE) is upgraded to a microspot SE compatible with the atomic force microscope (AFM). The focusing optical system of the previous microspot SE is optimized to incorporate an AFM head. In addition, the rotating compensator ellipsometer in polarizer-sample-compensator-analyzer configuration is adopted in order to minimize the negative effects caused by beam wobble. This research leads to the derivation of the expressions needed to get spectro-ellipsometric constants despite the fact that the employed rotating compensator is far from the ideal achromatic quarter-wave plate. The spot size of the developed microspot SE is less than 20 ㎛ while the AFM head is mounted. It operates in the wavelength range of 190-850 nm and has a measurement accuracy of δΔ ≤ 0.05° and δΨ ≤ 0.02°, respectively. Fast measurement of ≤3 s/sp is realized by precisely synchronizing the azimuthal angle of a rotating compensator with the spectrograph. The microspot SE integrated with an AFM is expected to be useful in characterizing the structure and optical properties of finely patterned samples.

Design of High Efficiency Permanent Magnet Synchronous Generator for Application of Waste Heat Generation ORC System (폐열발전 ORC 시스템 적용을 위한 고효율 영구자석형 동기발전기 설계)

  • Yeong-Jung Kim;Seung-Jin Yang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • The power generation method using expensive diesel has operation problems such as high cost diesel generator and a lack of reserved power due to increase of power demand in some islands, requiring expansion of power generation facilities. To solve this problems, it is necessary to improve the efficiency of power generation facilities through an ORC(Organic Rankin Cycle) system application that uses waste heat as a heat source. Therefore, localized application technology of price competitive and highly reliable ORC power generation system is needed, and optimization technology of generators is having great effect, so this study performed two generator designs to get a high-efficiency generator with an optimized 30kW output. The comparison of simulation data for two designed models showed that a generator with SPM factor of 46.2% had an efficiency of 92.1% and a power ouput of about 23.2kW based on 12,000rpm, a generator with SPM factor of 44.46%, had a power output of 27.9kW and efficiency of 93.6% based on above rpm. For the verification of improved design model with SPM factor of 44.46%, the prototype test system with 110kW motor dynamometer was installed and got to the efficiency of 92.08% with conditions of the rated capacity 25kW at 12,000rpm, the test results of prototype generator showed the validity of generator design.