• Title/Summary/Keyword: 동결 온도

Search Result 491, Processing Time 0.029 seconds

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

A Study on the Minimization of Ground Resistance Variance by Temperature and Freezing of Ground (온도변화 및 토양동결에 의한 접지저항값 변화 최소화에 관한 연구)

  • Kim, Geun-Hwan;Wong, Yoon-Chan;Park, Jung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.73-73
    • /
    • 2006
  • 본 연구의 목적은 배전선로 접지극의 온도변화 및 토양동결 상태에 따른 접지저항값의 변화를 관찰하고, 영상과 영하의 온도와 접지저항값 변화의 상관관계를 분석하여 접지저항값 변화를 최소화하는 데 있다. 온도변화에 따른 접지저항값 변화의 최소화를 이루기 위하여 접지극과 토양의 접촉저항을 최소화하는 방안을 연구 하였으며, 이를 현장에 적용하여 검증한 결과, 접지저항값의 변화가 최소화되는 우수한 성과를 거양하여 각종 접지공사의 설계시 활용할 수 있도록 하였다.

  • PDF

Effect of Freezing Conditions on the Formation of Ice Crystals in Food during Freezing Process (식품의 동결중에 생성되는 빙결정에 미치는 동결조건의 영향)

  • 공재열;김정한;김민용;배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • The reaching time to the freezing point was to be fast in the order of 2% agar gel, 5% agar gel, 20% gelatin gel, pork, respectively. The freezing time and the passing time through the zone of the maximum ice crystal formation had linear relationship with the coolant temperature. The average diameter d$_{p}$ of ice crystal in a soybean protein gel and the moving of freezing front were represented an inverse proportion, and the moving velocity of freezing front was shown as 3.4$\times$10$^{-6}$ $\textrm{cm}^2$/sec from predicted theoretical formula. This value was very close to experimental results. The storage temperature did not give any influences for the growth of ice crystal in inside soybean protein gels during freezing conservation. The relationship between freezing condition and structure of freezing front was as follows : (moving velocity of freezing front) : (mass transfer rate of water at freezing point)$\times$(surface area of freezing front).

  • PDF

An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures (동결 온도에서 다짐효과에 관한 실험적 연구)

  • Hwang, BumSik;Chae, Deokho;Kim, Youngseok;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Korea has four distinct seasons, showing hot and humidity in summer and cold weather lasted in winter. Domestic research on earth work has been developed according to the seasonal characteristics, and most of research topics have focused on the effect of freezing-thawing on the performance of geo-materials. However, the previous research was performed on the ground compacted at room temperature and therefore, the effect of the sub-zero temperature at the time of construction was not fully investigated. The ground characteristics compacted at freezing temperature can be different from those at room temperature and show different characteristics of strength and deformation caused by freezing and thawing. Therefore, the compaction tests on sandy materials were conducted under various temperature at $-3^{\circ}C$ and $-8^{\circ}C$ with various fine contents of 0%, 5%, 10% and 15% in weight fraction. The effectiveness of soil compaction at below-freezing temperatures were compared with the compaction at room temperature at $18^{\circ}C$ in terms of the maximum dry unit weight and optimum water contents. Based on the test results, the maximum dry unit weight tends to decrease with the freezing temperature and the relative compaction at $-8^{\circ}C$ can not be satisfied with general specification standard.

Biochemical Activity of Microorganism Stored by the Method of Partial Freezing (부분동결시에 미생물의 생화학적 활성에 관한 연구)

  • CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 1987
  • In order to study the preservation effect of $-3^{\circ}C$ partial freezing method, tile growth and biochemical activity of microorganisms and the changes of K-value in mackerel press juice were investigated at $0^{\circ}C,\;-3^{\circ}C$ supercooling (liquid phase) and $-3^{\circ}C$ freezing (solid phase). The results obtained in this paper were follows : 1) The growth and biochemical activity of microorganisms were reduced at $-3^{\circ}C$ supercooling than $0^{\circ}C$ in spite of the small variation in temperature. 2) There were no growth and biochemical activity of microorganisms at $-3^{\circ}C$ freezing (solid phase). 3) The difference in the K-value between $-3^{\circ}C$ supercooling and $-3^{\circ}C$ freezing was remarkable in spite of the same temperature.

  • PDF

Physicochemical Properties of Taro Flours with Different Drying, Roasting and Steaming Conditions (토란분말의 건조, 볶음 및 증자 조건에 따른 이화학적 특성)

  • Moon, Ji-Hye;Choi, Hee-Don;Choi, In-Wook;Kim, Yoon-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.696-701
    • /
    • 2011
  • To evaluate the processing adaptability of taro flours, the physicochemical properties of taro flour with different drying, roasting and steaming conditions were investigated. The moisture content and total dietary fiber were decreased as temperature increased with hot-air drying. Freeze-dried taro flours showed the highest vitamin C contents. Taro flours made by freeze-drying and hot-air drying showed significantly higher total dietary fiber content than those with roasting and steaming process. Steamed taro flours had the highest water absorption index, while hot-air dried and freeze dried taro flours had the highest water solubility index. No differences were displayed in the differential scanning calorimetry (DSC) thermal characteristics among hot-air dried and freeze dried taro flours. Roasted taro displayed decreased onset temperature and peak temperature as roasting temperature increased. Using a rapid visco-analyzer, the peak viscosity, through viscosity, and final viscosity of dried and steamed taro flours were higher than roasted taro flours, whereas the set back value, which is a prediction of retrogradation, decreased with steaming processing. From those results, it could be concluded that hotair dried taro flours, which have high gelatinization viscosity, are beneficial in imparting viscosity to dough products and hot-air drying after steaming taro flours, which retard retrogradation, is good for porridge and flake base products.

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.

Changes in Quality of Soft Persimmon during Freezing and Defrosting (동결 및 해동중의 연시의 품질변화)

  • 성전중;노영균;박석희;변효숙;함영진;최종욱
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.398-401
    • /
    • 1999
  • This study was conducted to investigate the changes in qualities of soft persimmon by freezing and defrosting. Testing varieties were Sangjudungsi and Chunsdobansi that were cultivated on Sangju and Chungdo regions, chief cultivation of astringent persimmon in Kyongbuk province. Dropping time to 40 degrees below zero of the flesh was 10∼20 minutes longer in Chungdobansi than that in Sangiudungsi. Freezing temperature of astringent persimmon was 2∼3 degrees below zero. Occurence rates of cracked fruit during freezing storage were 24.5% in Sangjudungsi and 15.5% in Chungdobansi. Defrosting of Sangjudungsi and Chungdobansi took 150 minutes and 120 minutes at 5$^{\circ}C$, respectively. L values of chromaticity were some lower after defrosting than that of frozen soft persimmon, and a and b values decreased during defrosting rapidly. Soluble solid contents of frozen soft persimmon almost didn't change during freezing, that is, harvesting, softening, frosting and defrosting steps. Defrosting completion time to core part took 4 hours and 30 minutes in Sangjudungsi and 4 hours and 20 minutes in Chungdobansi at ordinary temperature (10.9∼14.8$^{\circ}C$).

  • PDF