• Title/Summary/Keyword: 동결층

Search Result 116, Processing Time 0.03 seconds

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.

Evaluation of Active Layer Depth using Dynamic Cone Penetrometer (동적 콘 관입기를 이용한 활동층 심도평가)

  • Hong, Won-Taek;Kang, Seonghun;Park, Keunbo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • An active layer distributed on surface of an extreme cold region causes a frost heave by repeating the freezing and thawing according to the seasonal temperature change. Since the height of frost heave is greatly affected by the thickness of active layer, an accurate evaluation of the thickness of active layer is necessary for the safe design and construction of the infrastructure in the extreme cold region. In this study, dynamic cone penetrometer, which is miniaturized in-situ penetration device, is applied for the evaluation of active layer depth distribution. As the application tests, two dynamic cone penetration tests were conducted on the study sites located in Solomon and Alaska. In addition, ground temperature variations were obtained. As the results of the application tests, the depth of interface between the active layer and the permafrost was evaluated from the difference in dynamic cone penetration indexes of the active layer and the permafrost, and a layer was detected around the interface considered as an ice lens layer. Also, the interface depths between the above zero and the below zero temperature determined from the ground temperature variations correspond with the interface depths evaluated from the dynamic cone penetration tests. This study demonstrates that the dynamic cone penetrometer may be a useful tool for the evaluation of the active layer in the extreme cold region.

Development of a Commercial Process for Micro-Encapsulation of Lactic Acid Bacteria Using Sodium Alginate (알긴산 나트륨을 이용한 유산균 캡슐화의 상업화 공정 개발)

  • Kim, Jiyeon;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.313-321
    • /
    • 2017
  • We aimed to develop commercialization process of encapsulation which is superior in productivity compared to existing methods by using sodium alginate. Also, in the same process, sodium alginate with chitosan was used to encapsulate lactic acid bacteria with the same process and then the viable cell counts of the two encapsulated lactic acid bacteria were compared. As a test result of the fluidized drying process developed by the present researchers, it was found that the drying time was shortened by 15 to 20 hours compared to the freeze drying method, but the number of viable lactic acid bacteria was about 75% as compared with freeze drying. However, considering the cost and time of drying, it can be confirmed that the commercialization process is possible by the fluidized bed drying method. When the number of viable cells of Ca-alginate capsule and Chitosan-alginate capsule were compared, it was confirmed that there were about $1{\times}10^9$ or more bacteria in the former and about $1{\times}10^3$ in the latter. The lactic acid bacterium capsules prepared by the present technique were stable for 96 hours or more at pH 4.65 and 6.01, but disappeared within 1 hour at pH 7.07 and 8.35. This suggests that the disintegration of lactic acid bacteria can be easily occurred in small and large intestine.

An Study on the Investigation of Bridge Deck Condition by Analysis of Concrete Core Properties (교량바닥판 콘크리트 코어의 물성분석을 통한 상태조사연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Shin, Jae-In;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.789-792
    • /
    • 2008
  • Recently, the deteriorations of RC bridge decks on express-way are frequently observed. The major cause of deterioration for the RC concrete bridge decks exposed to de-icing chemiclas would be chloride-induced reinforcement corrosion. Therefore, Waterproofing is necessary for improvement of bridge deck durability and comfortable utility. In this study is to investigate the appearance of deterioration and properties of concrete core from the collect in a bridge deck. The results of this study shows that penetration waterproofing agents shows low infiltration depth and low water-repellent. It appears that the damaging of concrete deck is primarily waterproofing system rather than physical property.

  • PDF

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes (융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의)

  • Kwon, Yonghwan;Koo, Bhon K.
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.945-958
    • /
    • 2014
  • Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

Seismic Amplification Characteristics of Eastern Siberia (동시베리아 지역의 지진 증폭 특성)

  • Park, Du-Hee;Kwak, Hyung-Joo;Kang, Jae-Mo;Lee, Yong-Gook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.67-80
    • /
    • 2014
  • The thickness of permafrost in Eastern Siberia is from 200 to 500 meters. The seasonally frozen layer can vary from 0 to 4m depending on ground temperature and its location. The shear wave velocity varies from 80m/s in summer to 1500m/s in winter depending on soil type. When melted, large impedence will occur due to the difference between the shear wave velocity of seasonally frozen soil and that of permafrost layer. Large displacement may occur at the boundary of the melted and the frozen layer, and this phenomenon should be considered in a seismic design. In this research, one-dimensional equivalent linear analyses were performed to investigate the effects of the seasonally frozen layer on ground amplification characteristics. Soil profiles of Yakutsk and Chara in Eastern Siberia were selected from geotechnical reports. 20 recorded ground motions were used to evaluate the effect of input motions. As the thickness of seasonally frozen layer and the difference in the shear wave velocity increases, the amplification is shown to increase. Peat, very soft organic soil widely distributed throughout Eastern Siberia, is shown to cause significant ground motion amplification. It is therefore recommended to account for its influence on propagated motion.

Electron Microscopical Observation of Transglutaminase-treated Ultra High Temperature Milk Sedimiment (Transglutaminase로 처리한 초고온 살균유 침전물의 전자현미경적 관찰)

  • Moon, Jeong-Han;Hong, Youn-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1359-1366
    • /
    • 2004
  • Ultra high temperature treated (UHT) skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at various rates, lyophilized, and observed for morphological properties with a scanning electron microscope (SEM). UHT skim milk showed small holes of associated micelles at lower centrifugal rates, and became thick and irregular, and fine particles were associated regularly at higher centrifugal rates. When UHT skim milk with TGase was incubated for 1 hour, casein micelles aggregated and broadened as centrifugation rate increased. When UHT skim milk with TGase was incubated for 8 hours, casein micelles were associated irregularly to large aggregates and widened. Colloidal calcium phosphate-free skim milk with TGase incubated for 1 hour and separated by two-step centrifugation showed aggregated lump, while the milk incubated for 8 hours with TGase was associated with broadened, compact, and regular layers as the centrifugation rate increased. Such phenomena were caused by heat treatment, protein crosslinking reaction catalyzed by TGase and conformational changes of casein molecules, and could be dependent on reaction time, temperature and ultracentrifugation rate.

The Tissue Types of Stroma in Some Species of Hypoxylon (Hypoxylon속 자낭자좌 조직의 형태 연구)

  • Lee, Yang-Soo
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.453-460
    • /
    • 1997
  • The tissue types of stromata were observed intensively in four species of Hypoxylon under a scanning electron microscope (SEM). These stromata were sectioned with a freezing fracture method for observation. Several tissue types were recognized and stable in each species. This study presents the most intensive observation of tissue types of each layer of stromata. It will be useful for taxonomic criteria for the species level. However, the tissue types can not be major taxonomical criteria for the genus Hypoxylon.

  • PDF

The Durability Evaluation of Concrete using CFBC-ash Binder (발전소 부산물 활용 결합재를 이용한 콘크리트의 내구성 평가)

  • Lim, Gwi-Hwan;Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.259-260
    • /
    • 2018
  • This study evaluated the compressive strength, freeze-thaw and sulfate resistance characteristics of concrete using CFBC-Ash. The CFBC-Ash was adjusted to a particle size of 75 ㎛ or less and using by increasing the fineness of powder through milling. As a result, it was confirmed that the concrete using CFBC-Ash shows a high compressive strength, durability. Also, it is confirmed that CFBC-ash can be used as a concrete binder.

  • PDF