• Title/Summary/Keyword: 돈분액비

Search Result 96, Processing Time 0.022 seconds

Evaluation of Ammonia Emission from Arable Soil applied Liquid Manure and Compost (가축분 퇴.액비 시용에 따른 암모니아 휘산량 평가)

  • Lee, Yong-Bok;Yun, Hong-Bae;Lee, Youn;Kaown, Dug-In
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.329-338
    • /
    • 2009
  • Emission of ammonia to the atmosphere are considered a threat to the environment. The application of livestock manure and compost contributes significantly to the emission of ammonia from agriculture. The reduction in NH3 losses from field-applied manure and compost would be a good strategy to reduce national $NH_3$ emission. In this study, various application techniques of liquid manure and compost were compared to evaluate their potential for reducing $NH_3$ emission. In compost application, the reductions in $NH_3$ emission were 70 and 15% for immediately rotary after application (IRA) and rotary at 3-day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied in compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. Mean reductions in NH3 emission from application of liquid pig manure were 26 and 50% for rotary harrow after surface broadcast application in spring and fall, respectively, in comparison with surface broadcast application. Ammonia emission rate was decreased with increasing water content in soil due to dilution effect, but this reduction only was temporary up to 12 hours after application and cumulative $NH_3$ emission was increased with increasing water content in soil. However, the delay would be beneficial because it allows time for rotary hallow of the applied liquid pig manure. Therefor, ammonia emission can be reduced by immediately incorporation of liquid manure and compost after surface application.

  • PDF

Study on Dry Matter Yields and Persistence of Forage Plants Using Swine Slurry in Fallow Paddy Land Located in the Mid-mountain Area (돈분액비를 시용한 중산간지 휴경답에서 다년생 목초의 초종별 영속성 및 건물생산성에 관한 연구)

  • Yoon, Sei Hyung;Kim, Sang Woo;Lim, Young Chul;Jung, Min Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • This study was conducted to develop the technique for cultivation of forage crops using swine slurry in fallow paddy land located in the mid-mountain area (FPL). The field experiments were carried out from 2007 to 2009 on FPL at Kumsan, Chungbuk province in Korea. Swine slurry was prepared which decayed for 6 months. The experimental plots were consisted of seven treatments; tall fescue-based mixed pasture applied with chemical fertilizer (Control), mono-tall fescue pasture (MTF), tall fescue-based mixed pasture (TFBM), mono-Perennial ryegrass (MPR), mono-Italian ryegrass (MIR), mono-Red clover (MRC and mono), Reed canarygrass (MRCG) applied with swine slurry. The field of tall fescue-based pasture had been sown with a grasses mixture containing 'Fawn' tall fescue, 'potomac' orchardgrass, 'Reveille' Perennial ryegrass, and 'kenblue' Kentuky bluegrass, 'Kenland' Red clover. Seeding rates were 16, 6, 4, 2 and 2 (kg) per ha, respectively. DM yields of forages and rates of grass coverage were higher in MTF, TFBM and MRCG as compared with control treatment. This result means that FPL has contained with favorable conditions for growing grass, because forage productivity is more than 14.5 tons per ha per year in fallow paddy land. In addition, the farmer can save the trouble of repeated plowing and sowing every year, with the introduction of perennial grasses. The farmer must conduct the re-seeding and induce the improvement of management methods for the elevation of the persistence of red clover and perennial ryegrass, because both red clover and perennial ryegrass having high nutritive value and palatability was less persistent. Therefore, we suggest that FPL may be the good land for forage production utilizing swine slurry and swine slurry can be applied on FPL without any negative effects on DM production and the property of soil. FPL of Korea can be better utilized by applying swine slurry to the mono and/or mixed swards.

Polyamine Biosynthesis in Red Pepper and Chinese Cabbage by the Application of Liquid Pig Manure (돈분뇨 액비시용에 의한 고추 및 배추의 polyamine 생합성)

  • Hwang, Seon-Woong;Sung, Jwa-Kyung;Kang, Bo-Ku;Lee, Choon-Soo;Yun, Seung-Gil;Kim, Tae-Wan;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.171-176
    • /
    • 2004
  • To investigate the availability of nitrogen decomposed and released from liquid pig manure (LPM), this experiment was performed with red pepper (Capsicum annuum L., cv. Hanbando), and Chinese cabbage (Brassioa campestris L., cv. Konaenggiyeureumbaechoo) in 2001. Based on the total nitrogen of chemical fertilizer, both red pepper and chinese cabbage were treated with three and four applications of LPM, respectively. Yield of red fruits in the red pepper was increased by an enhancement of LPM application. However, that of chinese cabbage was enhanced with a reducing supply of LPM. Biosynthesis of polyamine in both crops such as red pepper and chinese cabbage was large in the early growth stage and was not increased by LPM application. The high biosynthesis of bound polyamine, monoamine and diamine, in the early growth stage was changed in an increase of conjugated polyamine and polyamine with a process of crop growth. Inorganic components in the leaf of red pepper by LPM application were equal or slightly lower than in chemical fertilizer, however, from the middle growth stage, contents of phosphate and potassium were increased. Those of chinese cabbage were slightly decreased from the early growth stage to the late. Considering this experiment, the thoughtless supply of LPM has not resulted in certain crop damages, and an application of LPM to increase a yield was different from crop species at some extent.

The Effects of Liquid Pig Manure Application on the Production of Japanese Millet (Echinochloa crusgalli) Soil Properties, and the Chemical Characteristics of Leaching Water (돈분 액비 시용이 피의 생산성, 토양 특성 및 용탈수의 화학적 조성에 미치는 영향)

  • Kim, Moon-Chul;Song, Sang-Taek;Hwang, Kyung-Jun;Lim, Han-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.257-266
    • /
    • 2006
  • Studies were carried out to evaluate the effect of liquid pig manure on the production of Japanese millet, the chemical characteristics of pasture soil and leaching water. The study was undertaken from June to September 2005. Randomized complete block design was used to allot four treatments: T1 (no fertilizer), T2 (N : 200 kg/ha, p : 150 kg/ha, K : 150 kg/ha), T3 (liquid pig manure containing 1.7% DM 200 kg N/ha) and T4 (liquid pig manure containing 7.0% DM 200 kg N/ha). Leaching water was sampled at 21 August (1st time), 9 September (2nd time) and 26 September (3rd time), 2005, respectively. No significant differences in the dry matter yield of Japanese millet was found among the four treatments, whereas the plant lengths of Japanese millet were higher in the T2, T3 and T4 than in T1 (p<0.05). Nitrogen, P and K uptake of J. millet tended to be influenced by application of chemical fertilizer or 7.0% DM liquid pig manure compared with T1 or 1.8% DM liquid pig manure. The organic matter (OM) content of soil was higher in T2, T3 and T4 than in T1. Na content was highest in T3 among the four treatments. $NO_{3^-}N\;or\;NH_{4^-}N$ content in leaching was not different among the four treatments. $SO_4$ content in leaching water sampled in 1st time was high in T4, but in T3 from 3rd time (p<0.05). Cl, Mg and Na contents were high in leaching water sampled in the 1st time from T4, whereas high in those from T3 in 2nd or 3rd time. Results show that the application of a high DM liquid pig manure is not better for producing Japanese millet and improving the properties of pasture soil than a low DM liquid pig manure. However, the contents of $SO_4$, Cl, Mg and Na in leaching water sampled in 1st time were high in a high DM liquid pig manure.

Determination of the Optimum Application Rate of Pig Slurry for Red Pepper Cultivation (고추에 대한 돈분액비 시용기준 설정)

  • Kang, Bo-Goo;Kim, Hyun-Ju;Lee, Gyeong-Ja;Park, Seong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.388-395
    • /
    • 2004
  • This study was carried out to determine the application rate of pig slurry for red pepper. Field experiment was designed with non-fertilizer, chemical fertilizer recommended by soil testing (CFRST) and pig slurry treatments. In pig slurry (PS) plots, pig slurry was applied as basal fertilizer with different equivalents to nitrogen of chemical fertilizer plot (60%: PS60, 80%: PS80, 100%: PS100, 120%: PS120) and chemical fertilizer was top-dressed additionally. Soil organic matter contents after 50 day of planting and after experiment in the plots treated with PS were higher than that of CFRST plot, whereas content of $NO_3-N$ of CFRST plot was higher than that of PS plot. Growth of red pepper were lowest in the non-fertilizer plot. Plant lengths of red pepper at 50 day after planting were similar among the different treatments, plant lengths of red pepper of PS100, PS120 and CFRST at 100 day after planting were higher than those of the PS60 and PS80 plots. But Main stem and stem diameter of red pepper were not different among the treatments. Uptake rate of N, P and K by red pepper plant were 27-44, 9-16 and 41-68% for total N, $P_2O_5$ and $K_2O$, respectively. Utilization of applied fertilizer ingredient by red pepper plant were in the order of PS80> PS60> FRST> PS100> PS120. Yield of red pepper tends to increase by 3% in the PS100 compared with the CFRST, but there was not significant difference between PS120 and CFRST. Chemical component of run-off collected from the furrow of the red pepper field was not different among the treatments. Greenhouse gases ($CH_4$ and $N_2O$) emission of non-fertilizer, PS100 and CFRST during the whole red pepper growth period were 4.0, 4.8 and $5.9kg\;CH_4\;ha^{-1}$, and 0.74, 6.68 and $8.38kg\;N_2O\;ha^{-1}$. Emission of $CH_4$ and $N_2O$ in PS100 was higher than those of CFRST by 23% and 26%, respectively. In this connection, to be used the pig slurry for red pepper, it is required that pig slurry must be decomposed for six months or more. Consequently, pig slurry equivalent to nitrogen of basal fertilizer of CFRST with additional top dressing of chemical fertilizer is recommend as an optimum application rate of pig slurry for red pepper.

Effect of Pig Slurry Application on the Mineral Content of Leaf, Fruit Quality and Soil Chemical Properties in Pear Orchard (돈분 액비 시용이 배나무 잎의 무기성분 함량, 과실특성과 토양화학성에 미치는 영향)

  • Park, Jin-Myeon;Lim, Tae-Jun;Lee, Seong-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.209-214
    • /
    • 2012
  • This experiment was carried out to investigate the replaceability of chemical fertilizer by SCB liquid fertilizer (SCB) in pear orchard for 5 years. The effects on the mineral content of leaf, fruit quality, yield and soil chemical properties are as follows: The mineral content of leaf showed no difference between the treatments; two SCB liquid fertilizer treatments based on the N (SCB-N) and K (SCB-K) content, and control (chemical fertilizer application). There were no significant differences in yield, titratable acidity and weight of the fruit although the figure of fruit weight was high in SCB-N treatment. Soluble solids content was higher in the SCB treatments than the control. Soil chemical properties such as the content of soil organic matter, available soil phosphate and exchangeable cation were not different, although soil pH was higher in SCB treatments. In conclusion, it is suggest that the use of chemical fertilizer in pear orchard could be replaced by the application of SCB liquid fertilizer because of the same effect on the growth of pear tree and soil chemical properties.

Effects of Concentrated Pig Slurry Separated from Membrane Filter and Several Environment-Friendly Agro-Materials Mixtures on the Growth and Yield of Lettuce (Lactuca sativa L.) in Hydroponics (막분리 돈분농축액비와 몇가지 친환경농자재의 혼합액이 수경재배에서 상추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • This experiment was conducted to investigate the effects of concentrated pig slurry separated from membrane filter and by environment-friendly agro-materials mixtures on growth of lettuce in hydroponics. The swine waste treatment system having a ultra filtration and a reverse osmosis process was designed in this study. Filtration of pig slurry was necessary to prevent the hose clogging in hydroponics. Primary separation using ultra filter was followed by concentration by RO (Reverse Osmosis). The concentrated pig slurry (CS) was mixed by five different environment-friendly agro-materials mixtures. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of lettuce. The concentration of nutrient solution in hydroponics was adjusted a range of 1.5 mS/cm in EC. The concentrated pig slurry was low in phosphorus(P), suspended solid and heavy matal, but rich in potassium (K). The concentrated slurry was lowest in the growth characteristics of leaf lettuce. And also SPAD value in leaf was reduced in plot treated with concentrated slurry. But the growth of lettuce in the mixtures plot (CS+BM+AA, CS+BM+AA+SW) in hydroponics was significantly high compared to concentrated slurry. The fresh yield of lettuce was 78, 84% that of nutrient solution as 131.9, 142.2g in plot of CS+BM+AA and CS+BM+AA+SW, respectively. Our studies have shown that it is possible to produce organic culture using concentrated slurry and environment-friendly agro-materials mixture, although growth is slower than when using a conventional inorganic hydroponic solution.

Effect of Pig Slurry Fertigation on Soil Chemical Properties and Yield of Tomato (Lycopersicon esculentum Mill.) (돈분 액비 관비가 토마토의 수량 및 토양화학성에 미치는 영향)

  • Park, Jin-Myeon;Lim, Tae-Jun;Kang, Seok-Boem;Lee, In-Bok;Kang, Yun-Im
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.610-615
    • /
    • 2010
  • This study was conducted to evaluate fertigation effects of pig slurry (PS) and chemical fertilizer (CF) in tomato by analyzing the growth and yield, nutrient content and uptake, nutrient use efficiency, and soil characteristics in greenhouse cultivation. The treatments compared were; no-fertilizer, two different levels of PS (26 mg $L^{-1}$ and 52 mg $L^{-1}$), and a control treatment of chemical fertilizer. There was no significant difference in growth and yield between PS and CF treatments. however, yield reduction was observed in PS 26 mg $L^{-1}$ treatment. The N-utilization efficiency in CF treatment was similar to that of PS 52 mg $L^{-1}$ treatment. Nutrient utilization efficiency decreased in order of potassium (K), nitrogen (N), phosphate (P) with 29.2~43.3% in K, 15.8~36.7% in N, and 3.0~6.3% in P. In soil chemical characteristics, soil pH in PS treatment was higher than in CF treatment. In contrast, nitrate content in soil was higher in CF treatment than in PS treatment. The content of exchangeable K in soil was higher in PS and CF 52 mg $L^{-1}$ treatments. There was no significant difference in exchangeable Ca and Mg among those treatments. Therefore, it can be concluded that chemical fertilizers can be substituted by PS based on soil chemical analysis in tomato fertigation culture.

Study on Summer Forage Crop Cultivation Using SCB (Slurry Composting-Biofilteration) Liquid Fertilizer on Reclaimed Land (간척지에서 SCB 액비를 이용한 여름철 사료작물 재배에 관한 연구)

  • Jo, Nam-Chul;Shin, Jae-Soon;Kim, Sun-Ho;Yoon, Sei-Hyung;HwangBo, Soon;Jung, Min-Woong;Lee, Kyung-Dong;Kim, Won-Ho;Seo, Sung;Kim, Jong-Geun;Song, Chae-Eun;Choi, Ki-Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Until now, The experiment about the forage crop have been almost not conducted on the reclaimed land. Therefore, this experiment was carried out in order to know productivity of summer forage crop using slurry composting-biofilteration (SCB) liquid fertilizer on reclaimed land of Hwaong and Sukmoon in korea from 2008 to 2009. The forage crops used in this experiment were corn and sorghum${\times}$sorghum hybrid which are used as summer forage crops in South Korea. The experiment was treated with chemical fertilizer (CF), swine slurry (SS) and SCB liquid fertilizer. Dry matter (DM) yield of corn was higher than those of sorghum${\times}$sorghum hybrid in both reclaimed lands but the effect of SCB liquid fertilizer was not appeared. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of corn were lower than those of sorghum${\times}$sorghum hybrid. The crude protein (CP) content and in vitro dry matter digestibility (IVDMD) of corn were higher than those of sorghum${\times}$sorghum hybrid. In generally feed values of corn were higher than those of sorghum${\times}$sorghum hybrid. The results of this study showed that summer forage crop cultivation using uses SCB liquid fertilizer on reclaimed land are possible.