• Title/Summary/Keyword: 도플러 영상

Search Result 109, Processing Time 0.026 seconds

An Experimental Study on Structure of Air-assist Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, H.C.;Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The effect of air entrainment in twin-fluid spray structure is investigated experimentally by varing the amount of itemizing air. The air entrainment is expected to affect on droplet size and velocity, droplet number density, turbulent kinetic energy and vorticity. PDA(Phase Doppler Anemometer) and PIV(Particle Image Velocimetry) system are used to measure those important factors in analyzing spray structure. The results show that spray structure consists of three distinctive regions ; the atomizing region near nozzle, characterizing strong convective effect, the central core region where droplets are accelerated, and the spray sheath region where droplets are decelerated due to air entrainment. The local air entrainment rate is largest near nozzle, characterizing strong turbulent kinetic energy and vorticity but deceases along axial distance.

  • PDF

Balancing of Digital VCR Head Drum (디지털 VCR 헤드 드럼의 밸런싱 연구)

  • 조여욱;이진구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 1998
  • Dynamic stability in rotation of the head drum of digital VCR is very important due to the nature of high rotation speed and small angular inertia. Therefore special considerations on reducing the unbalance and assuring the stability are required the design and manufacturing process. In this paper, newly developed digital head drum is introduced. And advanced methods in analyzing and reducing the unbalance is suggested. LDV(Laser Doppler Vibrometer) was used as a measurement system verifying our modeling and new method for balancing. Experiments show that the theoretical data estimated by modeling of shaft bending caused by unbalance mass and the measured data are almost identical. The deflection was reduced to 30% by applying the suggested balancing method.

  • PDF

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

Ultrasonographic and Magnetic Resonance Imaging Findings of Testicular Lymphoma (고환림프종의 초음파검사 및 자기공명영상 소견)

  • Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Purpose : To evaluate the specific radiologic findings of testicular lymphoma which will be able to differentiated from other testicular tumors. Materials and Methods : Pathologically confirmed eight cases were included in this study. All eight cases were performed ultrasonography and four cases were performed magnetic resonance image. On ultrasonography, the size, location, shape, margin, internal echogenicity, homogeneity and vascularity were evaluated. On magnetic resonance image, the shape, margin, homogeneity, signal intensity on T1- and T2-weighted images, degree and homogeneity of the contrast enhancement and contrast enhancement change on dynamic enhancement study. Results : The margin of the mass was smooth on 6 of 8 patients. Internal echogenicity of the mass lesion was hypoechoic than normal testicular parenchyme on 7 of 8 patients. Four cases were homogeneous, 3 cases were relatively homogeneous and 1 case was heterogeneous. All 8 cases showed increased vascularity. The mass lesion was iso-signal intensity on T1-weighted image and low-signal intensity on T2-weighted image. All four cases were enhanced homogeneously and mildly than enhancing normal testicular parenchyme. On dynamic enhancement study, the mass lesion is progressively enhanced with time. Conclusion : The possibility of testicular lymphoma should be considered when testicular mass was homogeneously hypoechoic and low signal intensity on T2-weighted image in old age patients.

  • PDF

Examination Techniques and Imaging Findings of Hepatic Hemangioma (간혈관종의 검사기법과 영상소견)

  • Chang-Hoe Koo;Jong-Wan Keum;Ji-Eun Seok;Dong-Chul Choi;Yun-Ho Choi;Man-Seok Han;Min-Cheol Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.375-384
    • /
    • 2023
  • Most Hepatic hemangiomas are asymptomatic and small in size, making them difficult to find by pathological examination. Therefore, radiological diagnosis is essential for the early finding and diagnosis of Hepatic hemangioma. Three-phase method using contrast medium in computed tomography, T1, T2-weighted imaging in magnetic resonance imaging, dynamic magnetic resonance imaging using contrast medium, echo planar imaging method, diffusion-weighted imaging method, blood pool scan using 99mTc-labeled red blood cells in nuclear medicine, we looked at the color doppler method In ultrasound, and it is important to accurately understand the imaging findings of hepatic hemangioma and perform the examination in order to make an accurate diagnosis. most hepatic hemangioma are benign tumors, care should be taken not to confuse them with malignant tumors such as hepatocellular carcinoma to prevent unnecessary procedures. Therefore, in order to make an accurate diagnosis, it is important to accurately understand the imaging findings of hemangioma and perform the examination.

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

Error Budget Analysis for Geolocation Accuracy of High Resolution SAR Satellite Imagery (고해상도 SAR 영상의 기하 위치정확도 관련 중요변수 분석)

  • Hong, Seung Hwan;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.447-454
    • /
    • 2013
  • The geolocation accuracy of SAR satellite imagery is affected by orbit and sensor information and external variables such as DEM accuracy and atmospheric delay. To predict geolocation accuracy of KOMPSAT-5 and KOMPSAT-6, this paper uses TerraSAR-X imagery which has similar spec. Simulation data for sensitivity analysis are generated using range equation and doppler equation with several key error sources. As a result of simulation analysis, the effect of sensor information error is larger than orbit information error. Especially, onboard electronic delay needs to be monitored periodically because this error affects geolocation accuracy of slant range direction by 30m. Additionally, DEM accuracy causes geolocation error by 20~30m in mountainous area and atmospheric delay can occur by 5m in response to atmospheric condition and incidence angle.

Development of Velocity Imaging Method for Motility of Left Ventricle in Gated SPECT (게이트 심근 SPECT에서 좌심실의 운동성 분석을 위한 속도영상화 기법 개발)

  • Jo, Mi-Jung;Lee, Byeong-Il;Choi, Hyun-Ju;Hwang, Hae-Gil;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.808-817
    • /
    • 2006
  • Although the generally used the velocity index of doppler effect is a very significant factor in the functional evaluation of the left ventricle, it depends on the subjective evaluation of an inspector. The objective data of the motility can be obtained from the gated myocardial SPECT images by quantitative analysis. However, it is difficult to image visual of the velocity of the motion. The aim of our study is to develop a new method for the imaging velocity using the gated myocardial SPECT images and use it as an evaluation index for analyzing motility. First we visualized left ventricle into 3 dimensions using the coordinates of the points which were obtained through a segmentation of myocardium. Each point was represented by the different colors, according to the velocity of each point. We performed a validation study using 7 normal subjects and 15 myocardial infarction patients. To analyze motility, we used the average of the moved distance and the velocity. In normal cases, the average of the moved distance was 4.3mm and the average of the velocity was 11.9mm. In patient cases, the average of the moved distance was 3.9mm and the average of the velocity was 10.5mm. These results show that the motility of normal subjects is higher than the abnormal subjects. We expect that our proposed method could become a way to improve the accuracy and reproducibility for the functional evaluation of myocardial wall.

  • PDF