• Title/Summary/Keyword: 도킹 장치

Search Result 12, Processing Time 0.021 seconds

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Ground Test of Docking Phase for Nanosatellite (초소형위성 지상 환경 도킹 시험)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.7-22
    • /
    • 2021
  • In this paper, we describe the results of the docking phase test in the ground environment of the rendezvous/docking technology verification satellite under development for the first time in Korea. rendezvous/docking technology is a high-level technology in space technology, which is also very important for accessing and performing tasks on relative objects in space orbit. In this paper, we describe the ground test results that the chaser finally docks the fixed target using an air bearing device. Based on the thrust control algorithm in the docking phase and the relative object recognition and relative distance estimation algorithm using visual-based sensors validated in this paper, we intend to use them for later expansion to rendezvous/docking algorithms in three-dimensional space for testing in space.

Development and Test of a Docking Type Automatic Landing System for Shipboard Landing (드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험)

  • Minsu Park;Sungyug Kim;Hyeok Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.

Study on the Docking Algorithm for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 알고리즘에 관한 연구)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.33-39
    • /
    • 2007
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking device and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI ocean engineering water tank. As AUV ISIMI approachs the docking device, there is some cases of showing an unstable attitude, because the lights which is on Image Frame are disappeared. So we propose the docking algorithm that is fixing the rudder and stem, if the lights on image frame are reaching the specific area in the Image Frame. Also we propose the new docking device, which has a variety of position and light number. In this paper, we intend to solve the some cases of showing an unstable attitude that were found in the testing, which, first, will be identified the validity via simulation.

Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Kim, Sang-Hyun;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

경인항 부두에서의 모바일하버 자동 Docking시스템 활용방안

  • Lee, Gye-Gwang;Jeong, Hyo-Seok;Kim, Se-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.52-54
    • /
    • 2011
  • 모바일 하버는 해상에서 대형 컨테이너선과 연결 후 고속으로 정밀하게 컨테이너를 상 하역해 부두로 이송하는 신개념 해상 운송수단이며, 이 모바일 하버의 자동 Docking시스템은 파도와 바람의 끊임없이 움직이는 두 부유체를 안전하고 신속하게 측면으로 밀착해 일정 거리를 유지하여 컨테이너의 상 하역을 안전하게 도와주는 장치로서, 자동 Docking시스템의 주요 핵심 시스템을 소개하고자 한다. 부두나 항구에 정박하는 선박들의 안전하고 빠른 계류 활용을 위한 안벽 계류 시스템으로 경인항 부두에 응용한다면 효율적인 항구 운용, 선박 및 여객선의 빠르고 안전한 계류, 신항만 운용 기술의 선구자 역할을 담당할 것으로 사료되며, 적절하고 효과적인 활용방안에 대해 언급하고자 한다.

  • PDF

Admittance Control for Satellite Docking Ground Testing System (위성 도킹 지상시험장치의 어드미턴스 제어)

  • Heejin Woo;Youngjin Choi;Daehee Won
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Development of Drag Augmentation Device for Post Mission Disposal of Nanosatellite (초소형위성의 폐기 기동을 위한 항력 증대 장치 개발)

  • Kim, Ji-Seok;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • In this paper, we described the development of a drag augmentation device for nanosatellite. Recently, space industry has entered the New Space era, and barriers to entry into Low Earth Orbit (LEO) for artificial objects such as small rockets and nanosatellite mega constellations have been significantly lowered. As a result, the number of space debris is increasing exponentially, and it is approaching as a major threat to satellite currently in operation as well as satellites to be launched in near future. To prevent this, international organizations like Inter-Agency Space Debris Coordination Committee (IADC) have been proposed space debris mitigation guidelines. The Korea Aerospace Research Institute (KARI) conducted KARI Rendezvous & Docking demonstration SATellite (KARDSAT) project, the first nanosatellites for rendezvous and docking technology demonstration in Korea, and we also developed drag augmentation device for KARDSAT Target nanosatellite that complied with the international guideline of post-mission disposal.

Dynamic Analysis of Floating Multi-Bodies Considering Crane Impact Loads (크레인 충격하중을 고려한 다중 부유체 운동해석)

  • Kim, Young-Bok;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • The concept of the Mobile Harbor had been made recently as a kind of feeder vehicle to transfer a certain amount of container boxes (i.e. 250 TEU at a time) from main ocean container vessels over 5,000 TEU capacity to the container terminal on land. In a harbor a short distance apart from the land, the container loading/unloading operation has to be performed on the main deck of the Mobile Harbor using the container cranes in the state of side-by-side mooring with protection of fenders and robot arms in the gap. Even under the ocean condition of the sea state class 2 or 3, the operation has to be confirmed to be safely performed. In this situation, the floating bodies considering the multiple-body interaction effect also has to be examined whether they might behave safely or not. Especially, this study focuses on the dynamic behavior of the Mobile harbor when a container box is hanged on the crane and the impact load due to the slewing motion is imposed in a certain sea state. The motion response should be controlled within the motion level to assure the safe operation.

Consideration of Launch and Recovery Systems for Operation of Underwater Robot from Manned Platform (유인플랫폼에서의 수중로봇 운용을 위한 진수 및 회수 체계 고찰)

  • Lee, Ki-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.141-149
    • /
    • 2016
  • In this technical note, the issues and challenges for the launch and recovery systems (LARS) and related techniques for the operation of an underwater robot from a manned platform are considered. Various types of LARS fitted to specific manned platforms, surface or sub-surface, are surveyed and categorized. The current UUV launch and recovery systems from surface ships and submarines utilize time consuming processes. As underwater robot technologies evolve and their roles are defined, safe and effective launch and recovery methods should be developed capable of reliable and efficient operations, particularly at a high sea state. To improve the existing underwater robot capabilities, LARS technology maturation is required in the near term, leading to the ability to incorporate autonomous LARS for an underwater robot on a manned platform. In the near term, particular emphasis should be placed on UUV LARS, which are surface ship based, with submarine based systems in the long term. Furthermore, for a dedicated LARS ship, independent of the existing host ship type, particular emphasis should be given to fully utilizing the capabilities of underwater robots.