• Title/Summary/Keyword: 도착지

Search Result 605, Processing Time 0.025 seconds

Optimal Server Allocation to Parallel Queueing Systems by Computer Simulation (컴퓨터 시뮬레이션을 이용한 병렬 대기행렬 시스템의 최적 서버 배치 방안)

  • Park, Jin-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.37-44
    • /
    • 2015
  • A queueing system with 2 parallel workstations is common in the field. Typically, the workstations have different features in terms of the inter arrival times of customers and the service times for the customers. Computer simulation study on the optimal server allocation for parallel heterogeneous queueing systems with fixed number of identical servers is presented in this paper. The queueing system is optimized with respect to minimizing the weighted system time of the customers served by 2 parallel workstations. The system time formula for the M/M/c systems in Kendall's notation is known. Thus, we first compute the optimal allocation for parallel M/M/c systems, comparing the results with those from the computer simulation experiments, and have the same results. The CETI rule is devised through optimizing M/M/c cases, which allocates the servers based on Close or Equal Traffic Intensities between workstations. Traffic intensity is defined as the arrival rate divided by the service rate times the number of servers. The CETI rule is shown to work for M/G/c, G/M/c queueing systems by numerous computer simulation experiments, even if the rule cannot be proven analytically. However, the CETI rule is shown not to work for some of G/G/c systems.

A Study on the Efficiency of Join Operation On Stream Data Using Sliding Windows (스트림 데이터에서 슬라이딩 윈도우를 사용한 조인 연산의 효율에 관한 연구)

  • Yang, Young-Hyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this thesis, the problem of computing approximate answers to continuous sliding-window joins over data streams when the available memory may be insufficient to keep the entire join state. One approximation scenario is to provide a maximum subset of the result, with the objective of losing as few result tuples as possible. An alternative scenario is to provide a random sample of the join result, e.g., if the output of the join is being aggregated. It is shown formally that neither approximation can be addressed effectively for a sliding-window join of arbitrary input streams. Previous work has addressed only the maximum-subset problem, and has implicitly used a frequency based model of stream arrival. There exists a sampling problem for this model. More importantly, it is shown that a broad class of applications for which an age-based model of stream arrival is more appropriate, and both approximation scenarios under this new model are addressed. Finally, for the case of multiple joins being executed with an overall memory constraint, an algorithm for memory allocation across the join that optimizes a combined measure of approximation in all scenarios considered is provided.

Emergency angioembolization performed in a hemodynamically unstable patient with grade V liver injury: The benefit of emergency angioembolization without computed tomography (혈역학적으로 불안정한 grade V 간손상에서 시행한 응급 혈관색전술: 전산화단층 촬영 없이 시행한 응급 혈관색전술의 이점)

  • Kang, Wu Seong;Park, Chan Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.235-239
    • /
    • 2019
  • High-grade liver injury is associated with high morbidity and mortality rates. We report successful emergency angioembolization and early interventional radiology support to manage a high-grade liver injury in a 29-year-old man who presented following a fall during parachute training. Upon arrival, his blood pressure was 80/40 mmHg, and emergency ultrasonography showed a liver injury with perihepatic fluid collection. The patient's blood pressure reduced to 60/40 mmHg, and emergency angiography was performed without computed tomography (CT) (door to puncture time 36 min). After angioembolization, his blood pressure returned to 120/77 mmHg. Subsequent CT revealed no additional bleeding or hollow viscus injury. He was admitted to the Intensive Care Unit and discharged without complications 30 days after admission. In this case, emergency angioembolization (without performing CT) could successfully and safely treat a hemodynamically unstable patient with a high-grade liver injury.

Development of Fire Engine Travel Time Estimation Model for Securing Golden Time (골든타임 확보를 위한 소방차 통행시간 예측모형 개발)

  • Jang, Ki-hun;Cho, Seong-Beom;Cho, Yong-Sung;Son, Seung-neo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.1-13
    • /
    • 2020
  • In the event of fire, it is necessary to put out the fire within a golden time to minimize personal and property damages. To this end, it is necessary for fire engines to arrive at the site quickly. This study established a fire engine travel time estimation model to secure the golden time by identifying road and environmental factors that influence fire engine travel time in the case of fire by examining data on fire occurrence with GIS DB. The study model for the estimation of fire engine travel time (model 1) covers variables by applying correlation analysis and regression analysis with dummy variables and predicts travel time for different types of places where fire may occur (models 2, 3, 4). Analysis results showed that 17 siginificant independent variables are derived in model 1 and the fire engine travel time differs depending on the types of places where fire occurs. Key variables(travel distance, number of lane, type of road) that are included commonly in the 4 models were identified. Variables identified in this study can be utilized as indicators for research related to travel time of emergency vehicles and contribute to securing the golden time for emergency vehicles.

Measurement Technique of Indoor location Based on Markerless applicable to AR (AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법)

  • Kim, Jae-Hyeong;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.243-251
    • /
    • 2021
  • In this paper, we propose a measurement technique of indoor location based on markerless applicable to AR. The proposed technique has the following originality. The first is to extract feature points and use them to generate local patches to enable faster computation by learning and using only local patches that are more useful than the surroundings without learning the entire image. Second, learning is performed through deep learning using the convolution neural network structure to improve accuracy by reducing the error rate. Third, unlike the existing feature point matching technique, it enables indoor location measurement including left and right movement. Fourth, since the indoor location is newly measured every frame, errors occurring in the front side during movement are prevented from accumulating. Therefore, it has the advantage that the error between the final arrival point and the predicted indoor location does not increase even if the moving distance increases. As a result of the experiment conducted to evaluate the time required and accuracy of the measurement technique of indoor location based on markerless applicable to AR proposed in this paper, the difference between the actual indoor location and the measured indoor location is an average of 12.8cm and a maximum of 21.2cm. As measured, the indoor location measurement accuracy was better than that of the existing IEEE paper. In addition, it was determined that it was possible to measure the user's indoor location in real time by displaying the measured result at 20 frames per second.

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.

A Study on Mitigating the Disparity in Public Transportation Information Usage among the Elderly through Expert Delphi Survey (전문가 델파이 조사를 통한 고령층의 대중교통 정보이용 격차 해소방안 연구)

  • Miyoung BHIN;Seulki SON;Hyunju KIM;Chaewon LEE
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.127-136
    • /
    • 2023
  • Gyeonggi Province has established a bus information system to provide real-time bus arrival information, aiming to make bus usage convenient for its residents. While the Gyeonggi bus information system is becoming more advanced through the application of IT technology, there are still information-vulnerable groups finding it difficult to use. In particular, the elderly have a low level of digital information literacy and habe difficulty using it. In this regard, this study aims to address the information usage disparity among the elderly in public transportation by utilizing expert in-depth survey methodology known as the Delphi technique. The study classified the policy initiatives that Gyeonggi Province should undertake into three categories: user education and expanded promotion, technological development and dissemination, and providing convenient usage environment. Through two rounds of surveys, the study assessed the priority of ten specific sub-tasks within these categories. Additionally, it gathered opinions on the effectiveness and feasibility of each item. The results yielded prioritization and evaluation of effectiveness and feasibility for nine sub-tasks. Based on these outcomes, the study proposed future projects that Gyeonggi Province should implement to address the information disparity among the elderly, offering a comprehensive approach to bridge the gap.

Development of Korea eCall System and Effects Analysis through Integrated Demonstration (한국형 eCall 시스템 개발 및 통합실증을 통한 기대효과 분석)

  • Sangheon Kim;Youngsung Cho;Sunwoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.61-81
    • /
    • 2024
  • eCall system assists traffic accident victims by connecting emergency rescue institutions with accurate accident information, helping them to identify the on-site situation in the event of a traffic accident. The purpose of this paper is to develop a Korean eCall system that reflects the requirements of domestic emergency rescue institutions and to analyze the expected effects through an integrated demonstration. The results of an integrated demonstration indicated that the communication success rate between the eCall IVS and the call center was 99.25%, and the average location information error was 1.2 m. In particular, it has been confirmed that the average location information error is less than 21.6 meters, as assessed by the Korea Communications Commission when evaluating the accuracy of domestic emergency rescue location information. When the eCall system was introduced, it was confirmed that the time from traffic accidents to hospital arrival could be shortened by 3 m 38 s for highways and 1 m 22 s for general roads. By it to traffic deaths from 2005 to 2022, it was analyzed that the number of fatalities decreased by 82,662, resulting in a reduction of approximately social costs.

A Study on the Relationship between User Discomfort in Digital-Based Transportation Services and Mobility: The Role of Technological Proficiency as a Moderator (디지털 기반 교통서비스 이용 불편함 경험과 이동성과의 관계 연구: 기술 활용 능력의 조절 효과를 중심으로)

  • Ah-hae Cho;Jihun Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.67-79
    • /
    • 2024
  • These instructions give you guidelines for preparing papers for JDCS. Recently, the use of digital devices like kiosks and smartphones has expanded, leading to the active provision of digital-based services in the transportation sector, such as choosing transportation modes and checking routes. This study analyzes the relationship between user discomfort when using digital transportation services and mobility. It also examines the moderating effect of technological proficiency on this relationship. The study found that 16.4% of participants experienced discomfort, with an average mobility score of 48.4 points and a technological proficiency score of 3.78 points. Discomfort with digital transportation services was positively correlated with mobility. Additionally, technological proficiency positively influenced mobility. This study analyzes and presents the impact of technology utilization ability on mobility. These findings can be used as basic data for making policy on the need to revitalize the use of digital-based transportation service and bridge the digital divide.

Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model (자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구)

  • Ji hwan Kim;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.110-126
    • /
    • 2024
  • Several studies have focused on developing the safest and most efficient path from the current location to the available parking area for vehicles entering a parking lot. In the present study, the parking lot structure and parking environment such as the lane width, width, and length of the parking space, were vaired by referring to the actual parking lot with vertical and horizontal parking. An automatic parking path planning model was proposed by collecting path data by various setting angles and environments such as a starting point and an arrival point, by putting the collected data into a deep learning model. The existing algorithm(Hybrid A-star, Reeds-Shepp Curve) and the deep learning model generate similar paths without colliding with obstacles. The distance and the consumption time were reduced by 0.59% and 0.61%, respectively, resulting in more efficient paths. The switching point could be decreased from 1.3 to 1.2 to reduce driver fatigue by maximizing straight and backward movement. Finally, the path generation time is reduced by 42.76%, enabling efficient and rapid path generation, which can be used to create a path plan for autonomous parking during autonomous driving in the future, and it is expected to be used to create a path for parking robots that move according to vehicle construction.