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Optimal Server Allocation to Parallel Queueing Systems by
Computer Simulation

Jin-Won Park*

HRE AEY0[ME o[t EE 718 AAHS 2H My bz et

ABSTRACT

A queueing system with 2 parallel workstations is common in the field. Typically, the workstations have different
features in terms of the inter arrival times of customers and the service times for the customers. Computer simulation
study on the optimal server allocation for parallel heterogeneous queueing systems with fixed number of identical
servers is presented in this paper. The queueing system is optimized with respect to minimizing the weighted system
time of the customers served by 2 parallel workstations. The system time formula for the M/M/c systems in
Kendall’s notation is known. Thus, we first compute the optimal allocation for parallel M/M/c systems, comparing
the results with those from the computer simulation experiments, and have the same results. The CETI rule is devised
through optimizing M/M/c cases, which allocates the servers based on Close or Equal Traffic Intensities between
workstations. Traffic intensity is defined as the arrival rate divided by the service rate times the number of servers.
The CETI rule is shown to work for M/G/c, G/M/c queueing systems by numerous computer simulation experiments,
even if the rule cannot be proven analytically. However, the CETI rule is shown not to work for some of G/G/c

systems.
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1. Introduction
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to a workstation. The study focuses first on the case of
2 parallel workstations with Poisson arrivals and expo-
nential service times where analytic solution is available.
Then we extend the study to the cases where arrival
and/or service times are non-exponentially distributed
with different levels of traffic intensities, p.

The problem stems from the allocation of servers in
large scale web server cluster systems, where simple
web page viewing and knowledge query services are
performed separately by a fixed number of web servers'™.
With a given number of web severs, the weighted system
time of customer’s request was examined by computer
simulation experiments. This paper is the generalization
of the previous study for finding a general rule for
allocating servers in an optimal way with respect to
minimizing the weighted system time!' >/

The queueing network models can be applied to various
types of working environment, but its numerical analysis
is restrictive because of its complexity. Smith et. all
considered optimal server allocation to series, merge,
and split topology and their combinations subject to
providing a threshold throughput by means of a set of
integer number of servers. Their approach focused on
allocating servers that can satisfy the given threshold
level of throughput. They also listed numerous references
concerning the optimal server finite queues and networks.
Bitran and Tirupatim dealt with the balancing problem
for an open network through the reallocation of capacity
among the workstations to minimize work-in-process.
Dallery and Stecke"™ dealt with the optimal allocation
of server and workloads in closed queueing networks.
They claimed that the network is balanced with respect
to servers if the numer of servers at each station is the
same, and is balanced with respect to the workloads if
the average workload allocated to each server is the
same. Shanthikumar and Yao'® formulated a nonlinear
integer program of allocating servers in a closed queueing
network to maximize throughput. They showed that the
throughput of the closed queueing network has a mono-
tonic property, such that any optimal allocation must
give more servers to stations with a higher workload.
Wein"”! proposed a method to determine the service rate
(or capacity) that minimize the expected equilibrium
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customer delay subject to a linear budget constraint on
the capacities. Wein first allocated just enough capacity
to each station to satisfy its effective arrival rate, and
then allocates the excess capacity among the stations in
proportion to the sqare roots of their effective arrival
rates. Woensel et. al.”*! tried to optimize the number of
buffers and servers in a setting of restricted M/G/c/K
queueing networks, in the way that the resulting through-
put is greater than a predefined threshold throughput.
Alexandros et. al.”’ examined the server allocation problem
in designing large production lines with reliable multiple
identical workstations in series.

Most of the researches surveyed dealt with a closed
queueing network, and focused on optimizing server or
buffer allocation with respect to minimizing work-in-
process or achieving a predefined throughput level. Also,
the previous studies focused on the theoretical aspects
of a closed queueing networks with respect to the
system throughput as a whole. However, this paper
concentrates on the server allocation problem for open,
parallel but heterogeneous workstations with a fixed
number of servers, with respect to maximizing the
weighted throughput of the whole system. Besides, our
research is concerned with finding a practical rule for
optimally allocating servers to parallel workstations even
if the rule may not be analytically proven to be optimal.
Thus, our research will produce a practically useful
optimal server allocation rule, which has not been examined
in previous researches.

The paper consists of 4 parts. Following the introduction
section, the optimal server allocation problems in func-
tional form and in schematic form are presented. The
next section presents the experimental results with ex-
haustive computer simulation runs under a simple server
allocation rule. The final section covers the conclusion

and further research issues.

2. The Optimization Problem

A parallel queueing network system consists of two
workstations with a number of equally capable servers
within a workstation and the total number of servers

are fixed. Customers arrive at each workstation separately
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and are served independently of other workstation. We
are concerned with optimally allocating servers to open,
parallel but heterogeneous workstations with a fixed
number of servers, with respect to maximizing the
weighted throughput of the whole system. Consider the
following optimization problem which is an analytic
model for the problem.

Minimize
W:[>\1/()\1+)\2)]I/V1+[>\2/()\1+)\2)]VV2 (1)

subject to

cte=c

0< A /egpy <1, 0<N/eopy <1, @)

where

W,=1/X; + [()\i/lj‘i)qpipi()/ci!(l —p)2 1+ 1 3)
1=1,2

pi =N/ (), i=1,2 “4)

and
61

Py =120 Ouf ) R+ /) e (1= p )T 5)
1=1,2.

The notations are
W : weighted average system time for
workstations 1, 2
W, W,

workstations 1, 2

: average system times for

Ars Ay o arrival rates for workstations 1, 2

¢;, ¢, : numbers of servers for workstations
1,2

g5ty © service rates for workstations 1, 2.

The schematic diagram for the problem is depicted
in Fig. 1, where customers arrive at each workstation
with the average arrival rates of A, \,, and are served
with average rates of jpu,p,. If ¢, ¢, servers are
assigned to workstations 1, 2, then the effective service
rates will be ¢, cop, respectively.

The service times, in general, are longer than inter-
arrival times, so that a workstation needs a certain
number of servers that the effective service rate can
exceed the arrival rate. Given a limited number of equally
capable servers, allocating the servers to the parallel
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Fig. 1. Schematic diagram for the problem

workstations is searched so that the weighted average
waiting time of the customers, W, in the system is
minimized.

As shown in equations (1)~(5), W is a function of
As>Ay W, W, and W, W, are the functions of
AL Ags figs sy but their closed forms are complicated
even when the arrivals are Poisson fashion and the
service times are exponentially distributed.

The problems we are considering were dealt with in
Park[zl, where hundreds of web servers are allocated for
2 different web services. The web server allocation was
optimally performed when the traffic intensities are
balanced among the services, called the CETI (Close or
Equal Traffic Intensity) rule, which is allocating ¢, ¢,
servers in a way that \;/c; i, = \,/cyp, or as close as
possible. This paper is an extension and generalization
of the result obtained in Park!".

The CETI rule is not analytically proven to be
optimal but can be shown optimal by computation when
the arrival process is Poisson and the service times are
exponential. However, if the arrival process is not Poisson
or the service time is not exponentially distributed, we
may not be able to compute the weighted average system
time analytically, but can obtain the weighted average
system time by computer simulation experiments. This
paper focuses on experimenting whether the CETI rule
works with various combinations of inter-arrival time
and service time distributions. Table 1 shows the com-
bination of the inter-arrival time distributions and service
time distributions that we are considering. In Table 1,
the general distributions include Uniform, Triangular
and Erlang distributions.
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Table 1. Combination of inter-arrival time and service time
distributions

Inter-arrival time Service time
Cases . e
distribution distribution
Case MM Exponential Exponential
Case MG Exponential General
Case GM General Exponential
Case GG General General

3. Simulation Experimental Results

The computer simulation experiments are designed
in such a way that the effect of allocating the servers
to the workstations is maximized. With a small number
of total servers, the effect is trivial but with a large
number of total servers the effect is indistinguishable.
Thus, after many different sets of total number of
servers were tested, 10, 14, 18 or 20 sever cases were
determined for different set of arrival rates/service
rates.

Fig. 2. shows the schematic picture of the model built
by ARENA simulation tool. The ARENA model starts
with generating customers of 2 different classes, records
the randomly generated arrival times and gives services
to the customers if servers are available. The model
then assigns randomly generated services times, records
the departure times when the services are done. At the
end of the services, the model computes the total system
times of customers. The model itself is simple but
needs to be experimented numerous times with various
settings of the system parameters.

First, we show the simulation experimental results
for Case MM in Table 2. In Case MM, the analytic
computation results for the weighted average system

Type A Arrive A

< | Type A s_time >

times of M/M/c queueing systems can be obtained due
to the results described in Lee!'”. The computer simulation
experiments last from 1,000 to 11,000 time units, deleting
data obtained during the first 1,000 time units. The ex-
periments repeated 5 times typically, but repeated 30 or
50 times when the W(s) values are not distinguishable.
Fig. 2. ARENA model for parallel queueing systems.

The notations in Table 2 are the same as in
equations (1), (2) and p, = \/cfiy, Py = Ao/ Copty. Also,
W(a), W(s) the weighted average system times from
analytic computation and simulation experiments,
respectively. The rightmost column in Table 2 shows
the accuracy of the simulation results with respect to
the analytic computation results, which are close
enough to find the optimal allocation of servers. As
shown in Table 2, the CETI rule works regardless of
the server size, the level of traffic intensities. The
results from the analytic computation and from the
simulation experiments exactly match in terms of the
optimal server allocation.

Table 3 shows the allocation of servers with Case
MG, and shows the CETI rule work. As shown in
Table 3, it is hard to differentiate the effects of server
allocation with light workload cases, where the rightmost
column shows the weighted average system times with
5, 30, 50 replications in the second case.

Table 4 shows other MG cases with heavy workloads,
where the effects of server allocation is revealed clearly
with small number of replications.

Tables 5 and 6 shows the results of Case GM, where
the CETI rule works. The simulation experimental results
for Case GM are not different from those from Case
MG. Similar to Case MG in Table 3, multiple rows in
the rightmost columns in Table 5 show the weighted
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Fig. 2. ARENA Model for parallel queueing Systems
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Table 2. Case MM, Poisson Arrival/Exponential Service, C=10, 20

7\1/}\2 LL[/LLz (Cl, Cz) (pl, Dz) W(a) W(S) W(s)/W(a)
0.8 0.25 4, 6) (0.8000, 0.8000) 6.2284 * 6.2556 * 1.0044
1.2 0.25 5, 5) (0.6400, 0.9600) 15.0769 14.8798 0.9869
04 025 2, 8) (0.8000, 0.6000) 5.9086 5.9414 1.0056
12 025 3,7 (0.5333, 0.6857) 4.5751 * 4.6151 * 1.0087

4, 6) (0.4000, 0.8000) 5.3322 5.3520 1.0037
6, 14) (0.8889, 0.5714) 9.5469 9.5249 0.9977
0.8 0.15 (7, 13) (0.7619, 0.6154) 7.3827 7.3688 0.9981
12 0.15 8, 12) (0.6667, 0.6667) 7.0274 * 7.0527 * 1.0036
O, 11) (0.5926, 0.7273) 7.0744 7.0935 1.0027
(10, 10) (0.5333, 0.8000) 7.5151 7.5912 1.0101
08 0.25 4, 6) (0.8000, 0.5000) 43424 44013 1.0136
12 04 5, 5) (0.6400, 0.6000) 3.5336 * 3.5379 * 1.0012
6, 4) (0.5333, 0.7500) 3.9368 3.9627 1.0066
(6, 14) (0.6667, 0.3810) 9.9037 9.8400 0.9936
(7, 13) (0.5714, 0.4103) 9.5161 9.4750 0.9957
0.2 0.05 (8, 12) (0.5000, 0.4444) 9.4000 9.4302 1.0032
0.8 0.15 9, 11) (0.4444, 0.4849) 9.3742 * 9.3939 * 1.0021
(10, 10) (0.4000, 0.5333) 9.3994 9.4183 1.0020
(11, 9) (0.3636, 0.5926) 9.4973 9.5017 1.0005
(8, 12) (0.8333, 0.6667) 17.6097 17.9243 1.0179
0.2 0.03 o, 11) (0.7407, 0.7273) 16.2149 * 16.1570 * 0.9964
0.8 0.10 (10, 10) (0.6667, 0.8000) 16.6526 16.9026 1.0150
(11, 9) (0.6061, 0.8889) 20.0349 20.3609 1.0163
Table 3. Case MG, Poisson Arrival/General Service Time, C=20
M/ Service Time Distribution (Cy, Cy) W(s)
(7, 13) (0.5714, 0.4103) 9.4423
, (8, 12) (0.5000, 0.4444) 9.3551
8; T”;‘r(iz’s 23’ 5)5) ©, 11)* (0.4444, 0.4849) 9.3479*
» (10, 10) (0.4000, 0.5333) 9.3669
(11, 9) (0.3636, 0.5926) 9.3852
(7, 13) (0.5714, 0.4103) 9.4028
9.3610
8, 12) (0.5000, 0.4444) 9.3562
9.3745
9.3468
02 Unif(15, 20) , ,
) 9, 11)* (0.4444, 0.4849)* 9.3561
0.8 Unif(5, 8.3333) 9.3548"
9.3064
(10, 10) (0.4000, 0.5333) 9.3407
9.3623
(11. 9) (0.3636, 0.5926) 9.4393
(7, 13) (0.5714, 0.4103) 9.4829
(8, 12) (0.5000, 0.4444) 9.4371
8:§ E:iiﬁi;gg;) > ©, 11)* (0.4444, 0.4849)* 9.3660*
’ (10, 10) (0.4000, 0.5333) 9.4255
(11. 9) (0.3636, 0.5926) 9.5143
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Table 4. Case MG Poisson Arrival/General Service Time, C=14

M/ Service Time Distribution (Ci, Cy) (P1, P2) W(s)
. 5, 9) (0.8000, 0.5926) 10.6506
8‘§ Tr‘;r(iz; 23’ 5)5 ) 6, 8) (0.6667, 0.6667)* 9.8872%
' b a, 7 (0.5714, 0.7619) 10.1823
. , 9) (0.8000, 0.5926) 10.6658
gé 32:2;5 ’82303)3 3 (6, 8)* (0.6667, 0.6667)* 9.9729*
' o 1,7 (0.5714, 0.7619) 10.1889
(5, 9) (0.8000, 0.5926) 11.2460
8‘§ gi:ﬁggzg’;) 2 6, 8) (0.6667, 0.6667)* 10.1245+
' B399 1,7 (0.5714, 0.7619) 10.4829
Table 5. Case GM General Arrival/Exponential Service Time, C=18
Service Time Service
Distribution Rates €. &) (P1, P2) W)
6, 12) (0.6667, 0.4444) 9.4968
Tria(3, 5, 7) 0.0 7, 11) (0.5714, 0.4762) 9.3869
Tria(0.75, ols (8, 10)* (0.5000, 0.5333)* 9.3848*
1.25, 1.75) : ©, 9) (0.4444, 0.5926) 9.4049
(10, 8) (0.4000, 0.6667) 9.4463
6, 12) (0.6667, 0.4444) 9.5626
93728
, 11) (0.5714, 0.4762) 9.3607
93578
93735
Unif(3, 7) 0.05 , ,
: @, 10)* (0.5000, 0.5333)* 93241
Unif(0.75, 1.75) 0.15 03315
9.3600
©, 9) (0.4444, 0.5926) 93313
93402
(10, 8) (0.4000, 0.6667) 9.4291
6, 12) (0.6667, 0.4444) 9.6572
7, 11) (0.5714, 0.4762) 9.4829
E::Eggéz 52) 2 g'(l)z @, 10)* (0.5000, 0.5333)* 9.4131*
BLH2 : ©, 9) (0.4444, 0.5926) 9.4789
(10, 8) (0.4000, 0.6667) 9.5879
Table 6. Case GM General Arrival/Exponential Service Time, C=14
Service Time Service
Distribution Rates €, &) (P1, p2) W(s)
Tria(3, 5, 7) 0.0 G, 9) (0.8000, 0.5926) 10.5308
Tria(0.75, ols (6, 8)* (0.6667, 0.6667)* 9.5520+
125, 1.75) : 7, 7) (0.5714, 0.7619) 9.7224
. G, 9) (0.8000, 0.5926) 10.2492
82:2372) 175) g'?z (6, 8)* (0.6667, 0.6667)* 9.5859+
S ' 7, 7) (0.5714, 0.7619) 9.7733
. 9) (0.8000, 0.5926) 10.7302
Eﬁ:ﬁgggz 52) S g'(l)g (6, 8)* (0.6667, 0.6667)* 10.0337+
Bo520 ' 7, 7) (0.5714, 0.7619) 103254
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Table 7. Case GG General Arrival/General Service Time, C=14

Interarrival Time Service Time
Distribution Distribution €, &) (P1, p2) W)
9.8785
5,9 (0.8000, 0.5926) 0.8342
Erlang(2.5, 2) Unif(15, 25) . N 9.6357
Erlang(0.625, 2) Unif(5, 8.3333) © 8) (0.6667, 0.6667) 9.5096*
9.5845
7, 7) (0.5714, 0.7619) 9.6054
9.3968
5, 9)* (0.8000, 0.5926) 9.3742
9.3746*
9.4066
Unif(3, 7) Tria(15, 20, 25)
. (6, 8) (0.6667, 0.6667)* 9.4060
Erlang(0.625, 2) Unif(5, 8.3333) 9.4049
9.5949
7, 7) (0.5714, 0.7619) 9.5902
9.5924
5, 9) (0.8000, 0.5926) 9.6899
9.3738
(6, 8) (0.6667, 0.6667)* 9.3850
Tria(3, 5, 7) Erlang(10, 2) 9.3916
Unif(0.75, 1.75) Tria(5, 7, 8) 9.3326
7, N* (0.5714, 0.7619)* 9.3351
9.3356*
(8, 6) (0.5000, 0.8889) 9.4443
Erlang(2.5, 2) . 5, 9) (0.8000, 0.5926) 9.7080
Tria(0.75, gzﬁlé’ 323:53)3 2) 6, 8) (0.6667, 0.6667)* 9.4390%
1.25, 1.75) g ’ (7, 7) (0.5714, 0.7619) 9.5073

average system times with 5, 30 and 50 replications.
With 50 replications, the allocation (8, 10) shows the
optimal for the case.

Table 7 shows the results for Case GG, where the
inter-arrival time distributions are not exponential and
the service time distributions are not exponential either.

The rightmost columns in Table 7 show the weighted
average system times with 5 and 30 replications for the
first case, and with 5, 30 and 50 replications for the
second and the third cases. The simulation experiments
are extended until the 95% confidence intervals are not
overlapped. Quite different from the conjecture that the
CETI rule would also work in Case GG, the CETI rule
does not work in some of GG cases.

From the computer simulation experiments presented
in this section, the CETI rule may work with M/M/c,
M/G/c and G/M/c cases where either inter-arrival time

or service time distributions are exponential, but does

not always work when both are not exponential.

4. Conclusion and Further
Research Issues

This paper is concerned with the optimal allocation
of servers to parallel queueing networks where the total
number of servers is constrained. The study focuses
first on the 2 parallel queueing systems with Poisson
arrivals and exponential service times where analytic
solution is available. Then the non-exponential cases of
inter-arrival time and/or service time distributions were
also studied.

From the numerous computer simulation experiments,
the CETI rule, allocating servers to the parallel workstations
in a way that both workstations having close or equal
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traffic intensities, may work with M/M/c, M/G/c and
G/M/c cases but not with some of G/G/c cases, where
M means exponential and G means general distributions.
However, the CETI rule remains only a conjecture
since the rule cannot be proven analytically.

The result obtained from our research may be applied
to many different real world situations. The result of
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