It is occurred bus arrival time errors when a bus arrives at a bus stop because of a variety of traffic condition such as traffic signal cycle, the time to get on and off a bus, a bus-only lane and so on. In this paper, bus delay time which is occurred as the result of traffic condition was estimated with Markov Chain process and bus arrival time at each bus stop was predicted with it. As the result of the study, it is confirmed to improve accuracy than the method of bus arrival time prediction with existing method (weighed moving average method) in case predicting bus arrival time using 7 by 7 and 9 by 9 matrixes.
BMS(Bus Management System)의 핵심인 버스도착예정시간을 산출하는 데 있어서 기존 대부분의 도시에서는 시계열 모형의 이동평균법, 칼만필터링 등으로 버스도착예정시간을 예측하고 있으나 이는 급격한 통행량의 변화 또는 급작스러운 사고, 신호체계 등에 적응 할 수 없다. 따라서 본 논문에서는 주변 도로의 통행량에 따른 버스의 정류장 도착시간을 예측하는 방법을 제안 한다. 주변 도로의 통행량과 실제 버스의 통행시간을 실측하여 기록, 학습하고 모델링하여 미래의 버스의 운행시간을 예측하는 방법이다. 또, 이동평균법에 의한 버스도착시간 예측결과와 본 논문에서 제안하는 결과와 비교, 분석하였다.
Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
KIPS Transactions on Computer and Communication Systems
/
v.6
no.4
/
pp.189-196
/
2017
BIS(Bus Information System) provides the different information related to buses including predictions of arriving times at stations. BIS have been deployed almost all cities in our country and played active roles to improve the convenience of public transportation systems. Moving average filters, Kalman filter and regression models have been representative in forecasting the arriving times of buses in current BIS. The accuracy in prediction of arriving times depends largely on the forecasting algorithms and traffic conditions considered when forecasting in BIS. In present BIS, the simple prediction algorithms are used only considering the passage times and distances between stations. The forecasting of arrivals, however, have been influenced by the traffic conditions such as traffic signals, traffic accidents and pedestrians ets., and missing data. To improve the accuracy of bus arriving estimates, there are big troubles in building models including the above problems. Hidden Markov Models have been effective algorithms considering various restrictions above. So, we have built the HMM forecasting models for bus arriving times in the current BIS. When building models, the data collected from Sunchean City at 2015 have been utilized. There are about 2298 stations and 217 routes in Suncheon city. The models are developed differently week days and weekend. And then the models are conformed with the data from different districts and times. We find that our HMM models can provide more accurate forecasting than other existing methods like moving average filters, Kalmam filters, or regression models. In this paper, we propose Hidden Markov Model to obtain more precise and accurate model better than Moving Average Filter, Kalman Filter and regression model. With the help of Hidden Markov Model, two different sections were used to find the pattern and verified using Bootstrap process.
Um, Ki Hun;Lee, Soong-bong;Lee, Jinsoo;Lee, Young-Ihn
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.6
/
pp.101-111
/
2017
This study propose a method to predict the bus arrival time by considering the signal delay time which is an element which can not be considered in the current bus arrival prediction information generation algorithm. In order to consider the signal delay time, travel time is divided into three components: service time, cruising travel time, and signal delay time. Signal delay time was estimated using intersection arrival time and TOD. The results show that most of the errors that occurred in predicting the arrival time are within about 30 seconds. Some of the estimates have large errors due to the nature of this methodology that uses the estimated value of the intersection arrival time rather than the observation value. It is also difficult to predict the arrival time of the express buses using this method. Future studies such as improving this through real-time location information will greatly improve the accuracy of the methodology.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1281-1283
/
2013
최근 커피에 대한 수요와 스마트기기를 이용한 어플리케이션의 사용률이 급증하고 있다. 기존의 시스템들은 예측 기능이 없었기 때문에 고객들은 정확한 시간에 서비스를 제공받기 어려웠다. 그러나 바쁜 현대인들에게 시간 개념은 매우 중요하다. 본 논문에서는 고객의 도착 시각을 예측하여 고객이 카페에 도착하자마자 따뜻한 커피를 바로 제공할 수 있는 커피앤코(Coffee&Co) 시스템을 제안한다. 커피앤코 시스템은 도착 시각 예측 시스템을 의미하며, 본 논문에서는 웹의 인터페이스 구현과 내부적인 기능을 소개한다. 커피앤코 시스템을 통하여 사용자들은 미리 주문한 커피를 카페에 도착하자마자 바로 제공받을 수 있고, 카페 입장에서는 매출을 올릴 수 있는 수단이 될 것으로 기대한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2017.11a
/
pp.124-127
/
2017
선박에서 배출되는 환경오염 물질 및 온실가스에 대한 규제가 강화됨에 따라, 환경오염 물질 및 온실가스의 배출과 직접적으로 관련있는 연료 소모량을 줄이려는 다양한 연구가 진행되고 있다. 연료 소모량을 줄이기 위한 방안 중 하나는 환경 및 기상 예보를 이용하여 연료가 가장 적게 소모되는 항로를 찾는 것이다. 기존 연구에서는 연료 소모량을 주된 목적함수로 최소화 하되, 도착 시간에 대한 조건을 평가하기 위해 도착 시간의 기댓값을 계산하고 추가적인 목적함수로 고려하는 경우가 많았다. 그러나 선박 운항 예측 시 적용되는 환경 외란 정보는 상당한 불확실성을 포함하고, 이로 인해 발생하는 운항 속도 및 도착 시간에 대한 불확실성도 상당히 클 수 있기 때문에, 도착 시간의 기댓값뿐만 아니라 도착 시간에 대한 불확실성을 기반으로 제한 시간 내에 선박이 도착할 확률을 정량적으로 평가하는 것이 필요하다. 본 연구에서는 다목적 최적화 기법을 이용해 도착 시간의 기댓값과 연료 소모량에 대한 Pareto set을 구하되, 환경 외란으로부터 발생하는 도착 시간의 불확실성을 계산하여, 제한 시간 내에 선박이 도착할 확률을 계산하고 이를 항로 최적화 시 적용한다. 제안하는 방법의 유용성을 검증하기 위해 실제 환경에 가까운 맵을 기반으로 부산-도쿄 간의 항로를 최적화하고, 그 결과에 대해 논의한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1287-1288
/
2013
최근에, 스마트 기기를 이용한 다양한 선 주문 시스템이 나오고 있다. 선 주문 하고, 일정 기한 동안 수령하는 현재의 선 주문 시스템에서 발전하기 위해 필요한 정보는 사용자의 도착시간이다. 따라서 본 논문에서는 선 주문 시스템 내에서 사용자의 도착시간을 예상하는 방안을 제안한다. 이를 통해 선 주문 시스템은 더욱 다양한 영역으로 활용될 수 있을 것이다.
To activate public transportation service, Bucheon City built Bus Information System based on Beacon type, and operates it for no.22 line. This research analyzes an effect of BIS operations, and mainly it analyzes far reliability evaluation of bus arrival time information and passenger satisfaction about BIS. As results of reliability evaluation of arrival time information service, it is proven to be practically inappropriate to use as arrival time data because it is not only travel time between each bus stop but also previous travel time history data. In order to improve this matter, neural network model was evaluated as the most outstanding one as result of experiment in applying current arrival time Prediction model. This research cannot help limiting for evaluation of operation effect in Bucheon City because there is no Bus Information System based on GPS type in Korea. For the future ITS model city, in the case of building ITS model city based on GPS type, it is possible to compare two systems relatively. In addition to that, fur the consideration of reliability of bus arrival time information, it is required to develop Predictable model and research factors that affect to bus operation.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.8
no.3
/
pp.1-10
/
2009
Bus delay time is occurred as the result of traffic condition and important factor to predict bus arrival time. In this paper, transition probability matrixes between bus stops are made by using Markov Chain and it is predicted bus delay time with them. As the results of study, it is confirmed a possibility of adapting the assumption which it has same bus transition probability between stops through paired-samples T-test and overcame the limitation of exiting studies in case there is no scheduled bus arrival time for each stops with using bus interval time. Therefore it will be possible to predict bus arrival time with Markov Chain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.