• Title/Summary/Keyword: 도메인 고유의 언어

검색결과 10건 처리시간 0.022초

SOA기반 워크플로우 환경에서 DSML의 구조적 접근방법을 사용한 프라이버시 정책 모델의 통합과 검증 (Integration and Verification of Privacy Policies Using DSML's Structural Semantics in a SOA-Based Workflow Environment)

  • 이용환;얀워너;야노스스테파노비치
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.139-149
    • /
    • 2009
  • 본 논문에서는 데이터 보호 규정에 관련된 요구사항들이나 규칙들이 소프트웨어에 잘 표현되어 있는지를 검증하기 위하여 도메인 고유의 언어인 DSML(Domain Specific Modeling Language)을 사용해 정책을 정규화 혹은 계산적 표현에 관련된 솔루션을 제시하고 있다. 모든 정책들은 공식적으로 프롤로그( Prolog) 언어 기반으로 표현된 후 DSML에 통합되며 정책검증은 요구사항 준수가 언제 평가되어야 하는지에 따라 정적 정책검증과 동적 정책검증의 두가지 정책이 존재한다.

  • PDF

도메인 특화 방법에 의한 영한 특허 자동 번역 시스템의 구축 (Construction of English-Korean Automatic Translation System for Patent Documents Based on Domain Customizing Method)

  • 최승권;권오욱;이기영;노윤형;박상규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.95-103
    • /
    • 2007
  • 본 논문은 웹과 같은 일반적인 도메인의 영한 자동 번역기를 특정 도메인으로 특화하는 방법에 의해 구축된 영한 특허 자동번역 시스템을 기술하는 것을 목표로 한다. 특정 도메인으로서의 특허 자동번역기를 위한 특화 방법은 다음과 같은 단계로 이루어진다: 1) 대용량 특허 문서의 수집 및 언어학적 특성 분석, 2) 전문용어 추출 및 대역어 구축, 3) 기보유한 용어의 대역어 특화, 4) 특허 고유의 번역 패턴추출 및 구축, 5) 언어학적 특성 분석에 따른 기보유 번역 엔진 모듈의 특화 및 개선, 6) 특화된 번역 지식 및 번역 엔진 모듈에 따른 번역률 평가. 이와 같은 특화 절차에 따른 특허 영한 자동 번역기는 특허 전문번역가의 평가에 의해 전분야 평균 81.03%의 번역률을 내었으며, 분야별로는 기계(80.54%), 전기전자 (81.58%), 화학일반(79.92%), 의료위생(80.79%), 컴퓨터(82.29%)의 성능을 보였으며 계속 개선 중에 있다.

ELECTRA 모델을 이용한 음절 기반 한국어 개체명 인식과 슬롯 필링 (Syllable-based Korean Named Entity Recognition and Slot Filling with ELECTRA)

  • 도수종;박천음;이청재;한규열;이미례
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.337-342
    • /
    • 2020
  • 음절 기반 모델은 음절 하나가 모델의 입력이 되며, 형태소 분석을 기반으로 하는 모델에서 발생하는 에러 전파(error propagation)와 미등록어 문제를 회피할 수 있다. 개체명 인식은 주어진 문장에서 고유한 의미를 갖는 단어를 찾아 개체 범주로 분류하는 자연어처리 태스크이며, 슬롯 필링(slot filling)은 문장 안에서 의미 정보를 추출하는 자연어이해 태스크이다. 본 논문에서는 자동차 도메인 슬롯 필링 데이터셋을 구축하며, 음절 단위로 한국어 개체명 인식과 슬롯 필링을 수행하고, 성능 향상을 위하여 한국어 대용량 코퍼스를 음절 단위로 사전학습한 ELECTRA 모델 기반 학습방법을 제안한다. 실험 결과, 국립국어원 문어체 개체명 데이터셋에서 F1 88.93%, ETRI 데이터셋에서는 F1 94.85%, 자동차 도메인 슬롯 필링에서는 F1 94.74%로 우수한 성능을 보였다. 이에 따라, 본 논문에서 제안한 방법이 의미있음을 알 수 있다.

  • PDF

텍스트 애니메이션을 위한 생략 정보 파악 및 복원 (Identification and Recovery of Elided Information for Text Animation)

  • 장은영;박종철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.205-213
    • /
    • 2004
  • 음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로, 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는. 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.

  • PDF

최대 엔트로피 모델을 이용한 연속음성인식에서의 인식 신뢰도 측정 (CONFIDENCE MEAUSRING METHOD FOR CONTIUOUS SPEECH RECOGNITION USING MAXIMUM ENTROPY MODEL)

  • 정상근;정민우;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.200-204
    • /
    • 2004
  • 음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로. 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는, 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.

  • PDF

의미 정보를 이용한 한국어 의미역 인식 연구 (A Study of Korean Semantic Role Labeling using Word Sense)

  • 임수종;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.18-22
    • /
    • 2015
  • 기계학습 기반의 의미역 인식에서 주로 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 단어의 의미 정보 또한 매우 주요한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 프레임 정보를 확장하는 방법을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.14, 위키피디아 문서 기반의 WiseQA 평가셋인 GS 3.0에서는 6.57의 성능 향상을 보였다.

  • PDF

웹 영한 번역기로부터 특허 영한 번역기로의 특화 방법 (Method Customizing From Web-based English-Korean MT System To English-Korean MT System for Patent Documents)

  • 최승권;권오욱;이기영;노윤형;박상규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.57-64
    • /
    • 2006
  • 본 논문에서는 웹과 같은 일반적인 도메인의 영한 자동 번역기를 특허용 영한 자동번역기로 특화하는 방법에 대해 기술한다. 특허용 영한 파동번역기로의 특화는 다음과 같은 절차에 의해 이루어진다: 1) 대용량 특허 문서에 대한 언어학적 특성 분석, 2) 대용량 특허문서 대상 전문용어 추출 및 대역어 구축, 3) 기존 번역사전 대역어의 특화, 4) 특허문서 고유의 번역 패턴 추출 및 구축, 5) 언어학적 특성 분석에 따른 번역 엔진 모듈의 특화 및 개선, 6) 특화된 번역 지식 및 번역 엔진 모듈에 따른 번역률 평가. 이와 같은 절차에 의해 만들어진 특허 영한 자동 번역기는 특허 전문번역가의 평가에 의해 전분야 평균 81.03%의 번역률을 내었으며, 분야별로는 기계분야(80.54%), 전기전자분야(81.58%), 화학일반분야(79.92%), 의료위생분야(80.79%), 컴퓨터분야(82.29%)의 성능을 보였으며 계속 개선 중에 있다. 현재 본 논문에서 기술된 영한 특허 자동번역 시스템은 산업자원부의 특허지원센터에서 변리사 및 특허 심사관이 영어 전기전자분야 특허 문서를 검색할 때 한국어 번역서비스를 제공받도록 이용되고 있으며($\underline{http://www.ipac.or.kr}$), 2007년에는 전분야 특허문서에 대한 영한 자동번역 서비스를 제공할 예정이다.

  • PDF

효율적 대화 정보 예측을 위한 개체명 인식 연구 (A Study on Named Entity Recognition for Effective Dialogue Information Prediction)

  • 고명현;김학동;임헌영;이유림;지민규;김원일
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.58-66
    • /
    • 2019
  • 대화 문장 내 고유명사와 같은 개체명에 대한 인식 연구는 효율적 대화 정보 예측을 위한 가장 기본적이며 중요한 연구 분야이다. 목적 지향 대화 시스템에서 가장 주요한 부분은 대화 내 객체가 어떤 속성을 가지고 있느냐 하는 것을 인지하는 것이다. 개체명 인식모델은 대화 문장에 대하여 전처리, 단어 임베딩, 예측 단계를 통해 개체명 인식을 진행한다. 본 연구는 효율적인 대화 정보 예측을 위해 전처리 단계에서 사용자 정의 사전을 이용하고 단어 임베딩 단계에서 최적의 파라미터를 발견하는 것을 목표로 한다. 그리고 설계한 개체명 인식 모델을 실험하기 위해 생활 화학제품 분야를 선택하고 관련 도메인 내 목적 지향 대화 시스템에서 적용 할 수 있는 개체명 인식 모델을 구축하였다.

페트리 네트를 이용한 시스템 속성의 명세 및 분석 (Specification and Analysis of System Properties by using Petri nets)

  • 이우진
    • 정보처리학회논문지D
    • /
    • 제11D권1호
    • /
    • pp.115-122
    • /
    • 2004
  • 소프트웨어 시스템 모델링에서는 정형적 기법으로 소프트웨어를 모델링하고 분석하여 소프트웨어 시스템이 가지는 문제점들을 구현에 앞서 미리 찾아 해결하고자 한다. 페트리 네트는 그래픽 정형 명세 언어로 병행적 시스템, 실시간 시스템, 통신 프로토콜 등의 소프트웨어 시스템 모델링 및 분석에 널리 이용되고 있다. 페트리 네트 분석에서, 교착상태(deadlock), 수행가능성(liveness) 등의 일반적인 시스템 특성 분석은 주로 도달성 분석을 통해 이루어지며 시스템 요구사항에 관한 고유 특성 분석은 모델 검사(model checking) 방법을 통해 이루어진다 하지만 도달성 분석과 모델 검사 방법에서는 기본적으로 시스템의 모든 가능한 상태들을 나열하여 분석하므로 모델의 규모가 커짐에 따라 상태가 기하급수적으로 증가하는 상태 폭발(state explosion) 문제가 발생한다. 이 논문에서는 상태 폭발을 회피하면서 시스템의 요구사항을 체계적으로 분석할 수 있는 새로운 방법을 제안하고자 한다. 먼저 분석하고자 하는 요구사항을 속성 네트로 나타낸 후, 시스템 모델과 속성 네트를 합성하여 분석한다. 이러한 합성 분석에서는 분석 대상 속성과 연관되지 않는 모델의 부분들을 축약 규칙에 따라 축약함으로써 분석 도메인을 점진적으로 줄어 나갈 수 있으며 요구사항 만족 여부를 간단히 검사할 수 있는 장점이 있다.

소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로 (Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics)

  • 서봉군;김건우;박도형
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.179-196
    • /
    • 2019
  • 최근의 '똑똑한 소비자(Smart Consumer)'라 불리는 소비자가 많아지고 있는데, 이들은 제조사나 광고를 통해 전달되는 정보에 의존하지 않고, 기존 사용자나 전문가들의 후기, 여러 과학 지식을 획득하여 제품에 대한 이해를 높이고, 본인 스스로가 직접 판단하여 구매하고 있다. 특히나 화장품 분야는 인체 유해성과 같은 부정적인 요소에 대한 민감도가 높고, 자신의 고유한 피부 특성과의 조화도 고려되어야 하기 때문에, 전문적인 지식과 타인의 경험, 본인의 과거 경험 등을 종합적으로 생각하여 구매 의사결정을 내려야 하고, 이에 대해서 적극적인 소비자가 많아지고 있다. 이러한 움직임은 '셀프 뷰티' 와 같은 '셀프' 문화의 열풍과 함께, 문화 현상인 '그루밍족'의 등장, 사회적 트렌드인 'K-뷰티' 와도 동행한다고 할 수 있다. 맞춤형 화장품에 대한 관심의 급부상도 이러한 현상 중 하나라 볼 수 있다. 소비자들의 맞춤형 화장품의 니즈를 충족시키기 위해, 화장품 제조사나 관련 기업들은 ICT기술과의 융합을 통하여 프리미엄 서비스를 중심으로 소비자의 니즈에 대응하고 있다. 그러나 기업 및 시장 현황이 맞춤형 화장품을 향해 진화하고 있지만, 소비자의 피부 상태, 추구하는 감성, 실제 제품이나 서비스까지 소비자 경험을 전체적으로 완전하게 다루는 지능형 데이터 플랫폼은 부재한다. 본 연구에서는 소비자 경험에 대한 지능형 데이터 플랫폼 구축을 위한 첫 단계로 소비자 언어 기반의 화장품 감성 분석을 수행하였다. 소비자들 개인의 선호나 취향이 분명한 앰플/세럼 카테고리를 중심으로 매출 순위 1위에서 99위까지의 99개 제품을 선정하여, 블로그와 트위터 등의 SNS 상에 언급되는 후기 내에 화장품 경험에 대한 소비자 감성을 수집하였다. 총 357개의 감성 형용사를 수집하였고, 고객 여정 워크샵을 통해 유사 감성을 합치고, 중복 감성을 통합하는 작업을 수행하였으며, 최종 76개 형용사를 구축했다. 구축한 형용사에 대한 SOM 분석을 통해 화장품에 대한 소비자 감성에 대한 클러스터링을 실시했다. 분석 결과, 총 8개의 클러스터를 도출했고, 클러스터 별 각 노드의 벡터 값을 기준으로 소비자 감성 Top 10을 도출했다. 소비자 감성을 기준으로 클러스터별 소비자 감성에 서로 다른 특징이 발견됐으며, 소비자에 따라 다른 소비자의 감성을 선호, 기존과는 다른 소비자 감성을 고려한 추천 및 분류 체계가 필요함을 확인했다. 연구 결과를 통해 감성 분석의 활용 도메인이 화장품만이 아닌 다양한 영역으로 확장될 수 있음 확인했으며, 감성 분석을 통한 소비자 인사이트를 도출할 수 있다는 점을 시사했다. 또한, 본 연구에서 활용한 디자인 씽킹(Design Thinking)의 방법론의 적용하여 화장품 특화된 감성 사전을 과학적인 프로세스로 구축했으며, 화장품에 대한 소비자의 인지 및 심리에 대한 이해를 도울 수 있을 것으로 기대한다.