• Title/Summary/Keyword: 도로 기하구조 정보

Search Result 79, Processing Time 0.022 seconds

A Preliminary Study on Developing a Trafficability Index of Vehicles in Wintertime (동절기 차량의 등판가능성 지표 구축 방안)

  • Chung, Younshik;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1611-1617
    • /
    • 2013
  • Information about trafficability or the condition of road with regard to its being traveled over by vehicles is one of the most critical factors for roadway operation in winter. Specifically, when traveling on snowy or icy surfaces, the traction force varies per vehicle type including tire types, geometric characteristics of roads, and conditions of road surfaces. In general, front-wheel drive or four-wheel drive vehicles have better traction performance on snowy or icy surface than rear-wheel drive vehicles, and the latter type vehicle causes more serious traffic congestion when there is unexpected snowfall. Thus, traffic information regarding trafficability with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions can provide a foundation to make a decision whether to use the associated roadway sections for roadway operators as well as users. Based on the preceding premise, the objective of this study is to present a methodology for developing a trafficability index with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions.

Analysis of Road Surface Irregularity and Superelevation Using Mobile Mapping System (Mobile Mapping System을 이용한 도로 평탄성과 편경사 분석 연구)

  • KIM, Gi-Chang;YOON, Ha-Su;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.155-166
    • /
    • 2019
  • Road infrastructure has increased explosively due to economic development after industrialization and at present road infrastructure is being changed and increased by construction of new roads and maintenance and expansion of existing roads. Such road infrastructure should support safe driving. Road management plays an important role in safe driving. The purpose of this dissertation is to verify predictability of dangerous sections by analyzing road geometrical structure such as surface irregularity and superelevation for some sections in Central Inland Expressway by MMS and present ways of managing roads using MMS. Having analyzed surface irregularity of roads by using MMS, it was found that over 50 percent of all eight sections, targets of this study need betterments and for superelevation, over 50 percent of two sections goes against superelevation standard. Targets of this study are sections that accidents occurred frequently based on history of past accidents and predictability of dangerous sections can be verified through analysis of road geometrical structure using MMS. Using MMS data created by construction of high definition maps which are being undergone for all roads and methods proposed by this study will help investigate dangerous sections efficiently according to road environment. A result of MMS can be used for maintenance of road furniture.

The Measurement of Road Alignment Using GPS-IMU System (GPS-IMU 통합 시스템을 이용한 도로기하구조 측정에 관한 연구)

  • Park, Jae-Hong;Yun, Duk-Geun;Sung, Jung-Gon;Lee, Jun-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.61-69
    • /
    • 2012
  • It is important for highway maintenance and safety assessment to get the accurate highway geometric information. However, it is difficult to acquire good highway geometric information due to missing blueprints or deteriorated highway sections. This research, to get highway geometric information rapidly, has developed a highway geometric analysis algorithm that uses data from vehicles with GPS-IMU integrated system. In conclusion, the result shows that 3.38% of error-ratio for the horizontal alignment and 0.083 absolute value difference for vertical grade comparing with highway drawings. Therefore, the result suggest that the developed method can be applied to the road safety inspection or road safety audit.

A Study on Evaluation of Consistency Using 3-Dimensional Sight Distance (3차원시거를 이용한 도로일관성 평가에 관한 연구)

  • Park, Je-Jin;Oh, Young-Wook;Kang, Jeong-Gyu;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.187-197
    • /
    • 2008
  • While driving a highway, A driver gets lots of information through geometrical structure, traffic situation, signs on the road. He gets most of the information by visual sense. Acceleration or deceleration and driving direction depend on sight distance. Therefore, it's essential to secure a driver's sight distance for a safe drive. However, design guides of geometrical structure and sight distance suggest respective standards of horizontal and vertical alignment. They do not indicate quantitative standard of combined alignment. Currently, element separated on a two-dimensional projected plane are available, but they do not guarantee safe and pleasant design. I will use the existent model analysing three-dimensional sight distance through mathematical calculation and sort a variety of geometrical structure element and type. In these researches, we will look at how much three-dimensional sight distance is overestimated or underestimated compared to two-dimensional. I will develop a program which predicts traffic velocity on the curvature of two-lane provincial road. stopped sight distance and three-dimensional sight distance will be compared at a predicted drive velocity. I will suggest the way to evaluate road consistency.

Algorithm for Identifying Highway Horizontal Alignment using GPS/INS Sensor Data (GPS/INS 센서 자료를 이용한 도로 평면선형인식 알고리즘 개발)

  • Jeong, Eun-Bi;Joo, Shin-Hye;Oh, Cheol;Yun, Duk-Geun;Park, Jae-Hong
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • Geometric information is a key element for evaluating traffic safety and road maintenance. This study developed an algorithm to identify horizontal alignment using global positioning system(GPS) and inertial navigation system(INS) data. Roll and heading information extracted from GPS/INS were utilized to classify horizontal alignment into tangent, circular curve, and transition curve. The proposed algorithm consists of two components including smoothing for eliminating outlier and a heuristic classification algorithm. A genetic algorithm(GA) was adopted to calibrate parameters associated with the algorithm. Both freeway and rural highway data were used to evaluate the performance of the proposed algorithm. Promising results, which 90.48% and 88.24% of classification accuracy were obtainable for freeway and rural highway respectively, demonstrated the technical feasibility of the algorithm for the implementation.

A Study on Update of Road Network Using Graph Data Structure (그래프 구조를 이용한 도로 네트워크 갱신 방안)

  • Kang, Woo-bin;Park, Soo-hong;Lee, Won-gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.193-202
    • /
    • 2021
  • The update of a high-precision map was carried out by modifying the geometric information using ortho-images or point-cloud data as the source data and then reconstructing the relationship between the spatial objects. These series of processes take considerable time to process the geometric information, making it difficult to apply real-time route planning to a vehicle quickly. Therefore, this study proposed a method to update the road network for route planning using a graph data structure and storage type of graph data structure considering the characteristics of the road network. The proposed method was also reviewed to assess the feasibility of real-time route information transmission by applying it to actual road data.

Developing Road Hazard Estimation Algorithms Based on Dynamic and Static Data (동적·정적 자료 기반 도로위험도 산정 알고리즘 개발)

  • Yang, Choongheon;Kim, Jinguk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.55-66
    • /
    • 2020
  • This study developed four algorithms and their associated indices that can quantify and qualify road hazards along roadways. Initially, relevant raw data can be collected from commercial vehicles by camera and DTG. Well-processed data, such as potholes, road freezing, and fog, can be generated from the Integrated management system. Road hazard algorithms combine these data with road inventory data in the Data Sharing Platform. Depending on well-processed data, four different road hazard algorithms and their associated indices were developed. To test the algorithms, an experimental plan based on passive DTG attached in probe vehicles was performed at two different test locations. Selection of the test routes was based on historical data. Although there were limitations using random data for commercial vehicles, hazardous roadways sections, such as fog, road freezing, and potholes, were generated based on actual historical data. As a result, no algorithm error was found in the entire test. Because this study provides road hazard information according to a section, not a point, it can be practically helpful to road users as well as road agencies.

Geometric properties on roofs of rectilinear polygons (직교다각형에 대한 지붕의 기하학적 성질)

  • Na Hyeon-Suk;Shin Chan-Su;Ahn Hee-Kap
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.895-897
    • /
    • 2005
  • 이차원 평면에 직교다각형이 주어져 있을 때, 직교다각형 위에 45도 각도로 기울어진 면들로 구성된 지형 구조인 지붕(roof)을 정의할 수 있다. 본 논문에서는 직교다각형에 대한 지붕의 다양한 기하학적 성질을 살펴본다. 이것은 인공위성으로부터 얻은 건물의 평면도 이미지로부터 3차원 지붕구조를 획득하여 출력함으로써 사실감있는 영상을 제공하는 데 활용될 수 있다.

  • PDF

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

Estimating Utility Function of In-Vehicle Traffic Safety Information Incorporating Driver's Short-Term Memory (운전자 단기기억 특성을 고려한 차내 교통안전정보의 효용함수 추정)

  • Kim, Won-Cheol;Fujiwara, Akimasa;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.127-135
    • /
    • 2009
  • Most traffic information that drivers receive while driving are stored in their short-term memory and disappear within a few seconds. Contemporary modeling approaches using a dummy variable can't fully explain this phenomenon. As such, this study proposes to use utility functions of real-time in-vehicle traffic safety information (IVTSI), analyzing its safety impacts based on empirical data from an on-site driving experiment at signalized intersection approach with a limited visibility. For this, a driving stability evaluation model is developed based on driver's driving speed choice, applying an ordered probit model. To estimate the specified utility functions, the model simultaneously accounts for various factors, such as traffic operation, geometry, road environment, and driver's characteristics. The results show three significant facts. First, a normal density function (exponential function) is appropriate to explain the utility of IVTSI proposed under study over time. Second, the IVTSI remains in driver's short-term memory for up to nearly 22 second after provision, decreasing over time. Three, IVTSI provision appears more important than the geometry factor but less than the traffic operation factor.