본 논문에서는 도로 주변의 나무와 건물, 그리고 옆 차선의 차량 등에 의한 그림자의 영향을 최소화하며 차선을 검출할 수 있는 방법을 제안하였다 우선 Hough transform을 수행하는 데 있어서 계산 시간을 줄이기 위하여 에지 영상에서 수평 투영을 통하여 vanishing line을 검출하였으며, vanishing line 아래 부분에서만 Hough transform을 수행하였다. 그리고 차선 검출을 위하여 Hough 평면에서 θ을 16등분하여 rough한 차선을 검출하였으며, 도로 형태에 대한 사전 지식을 이용하여 차선 검출을 시도하였다. 도로 주변상황이 다른 두 종류의 연속 영상들에 의한 실험 결과, 도로형태에 대하여 가정한 사전 지식과 유사한 영상들에 대하여 차선을 정확하게 검출하였다.
현재 차량 내 운전자에게 편의성과 안전성을 제공하는 시스템이 활발히 개발 중이고 향후 ADAS(Advanced Driver Assistance System)와 스마트 자동차에서 영상 정보를 이용한 물체 추적과 분석은 매우 중요한 부분을 차지하고 있다. 영상에서 얻을 수 있는 정보 중 현재 도로의 이정표 정보는 중요한 분석 정보로 사용된다. 하지만 국내 도로표지판 검출 연구의 경우 유럽과 북미와 비교하여 연구 개발이 활발히 진행되고 있지 않다. 국내의 경우 도로 이정표에서 영문자뿐만 아니라 한글 문자 정보까지 포함하고 있어 검출이 쉽지 않다. 또한 비교적 밝고 잡음이 적은 검출하기 좋은 환경에서는 검출이 잘 되지만 명암이 뚜렷하지 않고 잡음이 많은 환경에서는 도로 이정표 문자 검출이 어렵다. 이에 본 논문에서는 CLAHE(Contrast-Limited Adaptive Histogram Equalization) 방법을 적용하여 영상이 어둡고 잡음이 많은 환경에서 국내 도로 이정표의 문자 정보를 얻는다. 실험 결과, 기존 방법에 비해 문자 영역 검출 성능이 향상되었다.
본 논문은 차량에 설치된 블랙박스 영상으로부터 도로 노면에 표시된 방향지시 기호를 효율적으로 검출하는 방안을 제안한다. 차량 내부에 설치된 블랙박스 영상은 카메라의 원근 효과로 인해 방향지시 기호 영역을 올바르게 검출하지 못하는 문제점이 존재한다. 따라서 제안한 연구에서는 원근 효과를 가진 입력 영상에서 역원근 변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 맵핑한 평면 영상에서 방향지시 기호 영역을 신경망 검출기를 통해 검출한다. 입력 영상에서 역 원근 변환은 높은 계산량으로 인해 실시간 처리가 어려운 점이 존재한다. 이를 보완하기 위해 제안한 방안에서는 입력 영역의 도로노면 방향지시 기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI 영역의 Gray 색상에서 역원근 변환을 수행한다. 제안한 방안을 도로노면 방향지시 기호 검출 및 인식 연구에 적용한 결과, 약 87% 이상 비교적 정확히 검출율을 제시하였으며, 다양한 도로 환경에서도 높은 검출율을 제시하였다. 따라서 제안한 방안을 운전자의 안전운전지원시스템에 적용함으로써 보다 정확한 도로정보 제공시스템 적용이 가능함을 알 수 있다.
본 논문에서는 스페클 노이즈를 포함하는 SAR 영상에서 도로망과 같은 선형 구조를 검출하기 위하여 하이브리드 특징 검출 방법을 사용하였다. 먼저 국소적으로 이웃한 영역에 대하여 평균 밝기 비율 또는 통계적 특성을 고려하여 국소적 에지를 검출하였고, 도로에 대한 많은 정보를 위하여 양 검출기로부터 검출된 응답을 결합하였으며, 결합된 에지 세그먼트 중 도로에 일치하는 세그먼트를 결정하고, 연결하여 완전한 도로망을 검출하였다. 본 논문에서 도로망의 검출 방법으로 도로에 대한 일반적인 사전 지식을 MRF 모델로 정의하고, 제안한 세그먼트의 상호 작용 포인터 프로세서에 의한 에너지 함수를 최적화하여 도로망을 검출하였다.
본 논문은 복잡한 도로 영상에서 차량 검출의 효율성을 높이기 위해 체인코드를 이용한 차선의 검출로부터 도로 영역을 찾아 차량이 존재하는 차량 영역의 추출 기법을 제안한다 먼저, 복잡한 도로 영상에서 정확한 차선을 검출하기 위해 체인코드를 이용하여 에지 화소들간의 연결성을 고려한다. 주행 차량의 방향과 일치하는 차선을 검출한 후, 중앙의 차선으로부터 차도의 폭과 차선의 소실점을 찾아 인접하는 차도를 찾는다. 마지막으로 주행 차선과 인접 차선을 포함하는 도로 영역 내에 차량의 에지 정보를 이용하여 차량이 존재하는 차량 영역을 추출한다 따라서, 제안하는 차량 영역의 추출 기법은 복잡한 배경을 갖는 도로 영상에서 차량의 검출율을 높이고 추출된 차량 영역에 한정할 수 있기 때문에 차량을 검출하는데 매우 효율적이다. 본 논문은 제안하는 차량 영역의 추출 기법의 우수성을 복잡한 도로 영상에서 차량 검출율의 실험을 통해 검증하였다.
본 논문은 MIMO-OFDM 시스템에서 복잡도와 검출 성능의 관점에서 효율성을 위하여, QRD-M과 DFE 및 반복 검출을 통한 분할 검출 기법을 제안한다. 제안된 기법은 공간 스트림에 따라 다른 검출 방법을 사용하여 신호들을 검출한다. 제안된 기법에서 낮은 복잡도를 요구하는 공간 스트림에서는 높은 복잡도와 높은 검출 성능을 가지는 QRD-M을 사용하고 높은 복잡도를 요구하는 공간 스트림에서는 낮은 복잡도와 낮은 검출 성능을 가지는 DFE를 사용한다. 또한 DFE가 사용된 공간 스트림에 대해서는 신뢰성을 보장하기 위해 반복 검출을 수행한다. 시뮬레이션을 통하여, 제안된 기법은 비록 기존의 기법보다 증가된 복잡도를 가지지만, 검출 성능을 월등히 개선시키는 것을 확인하였다.
본 연구에서는 레이더 검지 시스템과 통합하여 적용하기 위해 도로 위를 이동하는 자동차의 영상을 입력 받아 자동차를 검출하는 방법을 제안한다. 입력 영상의 제약조건이 있다. 도로 위에서 아래 방향을 비스듬히 내려 보는 고정된 시야를 가져야한다는 점이다. 주어진 영상 중 도로 영역만을 이용하기 위해 도로 영역을 관심영역으로 검출해 적용한다. 서론에서는 도로 영역 내에서 차량 검출을 위해 사용한 모션 히스토리 이미지 추출 방법, SIFT(Scale-Invariant Feature Transform) 알고리즘, 히스토그램 분석 등을 적용한 실험결과와 이에 대한 한계점을 제시했다. 이를 해결하기 위해서 가우시안 혼합 모델(GMM, Gaussian Mixture Model)의 응용을 제안한다. 가우시안 혼합 모델 알고리즘을 응용한 차량 검출 GMM(VDGMM, Vehicle Detection GMM)과 이를 차량 검출에 더 최적화한 차량 검출 GMM 2.0을 설명하고, 차량 검출 GMM 2.0을 적용한 실험결과 및 결론을 제시한다. 도로 영역 검출 없이 GMM을 적용한 결과는 정확율, 재현율, F1이 각각 9%, 53%, 15%이었고, 도로 영역 검출 후 차량 검출 GMM 2.0을 적용한 결과는 각각 85%, 77%, 80%로 많은 차이를 보였다.
본 논문에서는 스테레오 비전기반의 컬럼 검출과 조감도 맵핑을 이용한 전방 차량 검출 알고리즘을 제안한다. 제안된 알고리즘은 실제 복잡한 도로 환경에서 전방 차량을 강건하게 검출할 수 있다. 전체적인 알고리즘은 도로 특징기반의 컬럼 검출, 조감도 기반의 장애물체 세그멘테이션, 차량 특징기반의 영역 재결합, 차량 검증으로 크게 네 단계로 구성되어 있다. 먼저 v-시차맵상에서 최대 빈도값을 이용하여 도로 특징 정보만을 추출한 후, 이를 기반으로 컬럼 검출을 수행한다. 도로 특징 정보는 기존의 중앙값과 달리 도로 환경에 영향을 받지 않아 도로상의 장애물체 유무를 판단하는 기준으로 적절하다. 그러나 다수의 장애물체가 동일한 장애물체로 검출되는 것을 해결하기 위하여 조감도 기반의 세그멘테이션을 수행한다. 조감도는 시차맵과 카메라 정보를 기반으로 계산된 장애물체들의 위치를 평면상에 표시함으로써 장애물체를 쉽게 분리할 수 있다. 그러나 분리된 장애물체 중에는 동일한 장애물체인 경우도 있으므로, 도로상의 차량 특징을 기반으로 장애물체가 동일한지를 판단하여 재결합하는 과정을 수행한다. 마지막으로 시차맵과 그레이 영상기반의 차량 검증 단계를 수행하여 차량만 검출한다. 제안된 알고리즘을 실제 복잡한 도로 영상에 적용함으로써 차량 검증 성능을 검증한다.
기존의 얼굴 인식 기술은 얼굴 검출과 얼굴 인식이라는 두 분야로 나뉘며, 얼굴 검출 기술은 주로 얼굴 인식을 위한 전처리 단계로 이용되었다. 이러한 얼굴 검출 기술은 방대한 양의 사진 콘텐츠를 분류하는 것에도 이용될 수 있다. 얼굴 검출 기술을 통해 사람이 있는 경우 인물 사진, 없는 경우 풍경 사진으로 분류한다. 그러나 기존의 얼굴 검출 기술만으로는 정확성이 떨어진다. 이를 보완하기 위해 본 논문에서는 사진의 구조 단순도 알고리즘을 제안 한다. 구조 단순도는 사진의 색상 구도의 단순비율을 의미하며, 일반적으로 인물 사진일 때 작은 값을 풍경 사진일 때 큰 값을 갖는다. 제안 방법의 유용성을 검증하기 위해 인물 사진 250장, 풍경 사진 250장을 이용하여 분류 실험을 하였다. 얼굴 검출 기술만을 이용한 실험은 66%의 정확성을 나타낸 반면 얼굴 검출 기술과 구조 단순도를 이용한 실험은 74.6%를 나타내었다. 따라서 얼굴 검출 기술과 구조 단순도를 이용하면 효과적인 사진 분류를 할 수 있다.
본 논문은 차량에 설치된 블랙박스 영상으로부터 도로노면에 표시된 방향지시기호를 효율적으로 검출하는 방안을 제안한다. 제안한 연구에서는 원근 효과를 가진 입력영상에서 역원근변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 매핑 한 평면 영상에서 BOF 특징정보 기반의 신경망 인식기를 통해 검출한다. 입력영상에서 역원근변환과 특징정보의 검출 및 인식은 높은 계산량 때문에 실시간 처리가 어려운 점이 있다. 이를 보완하기 위해 제안한 방안에서는 입력영역의 도로노면 방향지시기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI영역의 Gray 색상에서 역원근변환을 수행한다. 그리고 각 도로기호 영역들을 실시간 검출 및 인식하기 위해 인식코자 하는 영역 극소 특징벡터를 추출하고 이를 근소화시킨 클래스로 군집화하여 BOF를 생성한 후 이를 활용한 신경망을 통해 검출한다. 제안한 방안을 도로노면 방향지시기호 검출 연구에 적용한 결과, 약 89% 이상 비교적 정확한 검출률을 제시하였으며, 다양한 도로 환경에서도 높은 검출률을 제시하였다. 따라서 제안한 방안을 안전운전지원시스템을 위한 보다 정확한 도로정보 제공시스템에 적용 가능함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.