• Title/Summary/Keyword: 도로데이터

Search Result 1,191, Processing Time 0.023 seconds

Yolo based Light Source Object Detection for Traffic Image Big Data Processing (교통 영상 빅데이터 처리를 위한 Yolo 기반 광원 객체 탐지)

  • Kang, Ji-Soo;Shim, Se-Eun;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.40-46
    • /
    • 2020
  • As interest in traffic safety increases, research on autonomous driving, which reduces the incidence of traffic accidents, is increased. Object recognition and detection are essential for autonomous driving. Therefore, research on object recognition and detection through traffic image big data is being actively conducted to determine the road conditions. However, because most existing studies use only daytime data, it is difficult to recognize objects on night roads. Particularly, in the case of a light source object, it is difficult to use the features of the daytime as it is due to light smudging and whitening. Therefore, this study proposes Yolo based light source object detection for traffic image big data processing. The proposed method performs image processing by applying color model transitions to night traffic image. The object group is determined by extracting the characteristics of the object through image processing. It is possible to increase the recognition rate of light source object detection on a night road through a deep learning model using candidate group data.

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

A Study for Removing Road Shields from Mobile Mapping System of the Laser Data using RTF Filtering Techniques (RTF 필터링을 이용한 모바일매핑시스템 레이저 데이터의 도로 장애물 제거에 관한 연구)

  • Song, Hyun-Kun;Kang, Byoung-Ju;Lee, Sung-Hun;Choi, Yun-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2012
  • It is a global trend to give attention to generating precise 3D navigation maps since eco-friendly vehicles have become a critical issue due to environmental protection and depletion of fossil fuels. To date, Mobile Mapping System (MMS) has been a efficient method to acquire the data for generating the 3D navigation maps. To achieve this goal so far in the Mobile Mapping System using the data acquisition method has been proposed to be most effective. For this study the basic RTF filter algorithm was applied to modify to fit MMS quantitative analysis derived floor 99.71%, 99.95% of the highly non-producers to maintain accuracy and high-precision 3D road could create DEM. In addition, the roads that exist within the cars, roadside tree, road cars, such as the median strips have been removed to shields it takes to get results effectively, and effective in practical applications and can be expected to improve operational efficiency is considered.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Query Routing in Road-Based Mobile Ad-Hoc Networks (도로 기반 이동 애드 혹 망에서 질의 처리 방법)

  • Hwang So-Young;Kim Kyoung-Sook;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.259-266
    • /
    • 2005
  • Recently data centric routing or application dependent routing protocols are emerged in mobile ad hoc networks. In this paper, we propose a routing method for query processing in MANET(Mobile Ad hoc NETwork) environment, called road-based query routing, with consideration on real time traffic information of large number of vehicles. In particular, we focus on the method that process arrival time dependent shortest path query in MANET without a central server on the road networks. The main idea of our approach lies in a routing message that includes query predicates based on the road connectivity and on data gathering method in real time from vehicles on the road by ad-hoc network. We unify route discovery phase and data delivery(query processing) phase in our mechanism and reduce unnecessary flooding messages by pruning mobile nodes which are not on the same or neighboring road segments. In order to evaluate the performances of the proposed method, we established a model of road networks and mobile nodes which travel along the roads. The measurement factor is the number of nodes to whom route request is propagated according to each pruning strategy. Simulation result shows that road information is a dominant factor to reduce the number of messages.

Integrated Assessment for Commercialization of Road Hazardous Information Colleted by Commercial Vehicles (사업용 차량 기반 도로위험정보 제공의 상용화를 위한 통합 평가)

  • Yoo, Kyung-su;Chung, Kyungmin;Chae, Chandle
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.30-42
    • /
    • 2021
  • The amount of compensation and the number of cases owing to car damage from pot holes on highways across the country increased by about 4.2 times and 3.5 times, respectively, in 2019 compared to 2015. Due to the increase in damage caused by these road hazards, the Ministry of Land, Infrastructure and Transport is developing technologies and services that can collect road hazard information by using devices on commercial vehicles (DTGs, black boxes, ADASs). In preparation for the development of these technologies, this study conducted an integrated assessment of algorithms developed for interrupted-flow and uninterrupted-flow traffic under three scenarios in order to provide road hazard information to drivers and road managers. As a result, the overall accuracy of the integrated assessment was derived at 81.88%. Errors generated in this integrated assessment reflect only missing data in less than 1 minute, GPS coordinate location and algorithm related errors, taking into account the purpose and assumptions of the assessment. Among them, we derive an accuracy of 90.15%overall by calibrating GPS error data. The results of this study can be used as basic data for improving the accuracy of location-based information collected by commercial vehicles and for policy development.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

Real-Time Pavement Damage Detection Based on Video Analysis and Notification Service (동영상 분석을 통한 실시간 포장 손상 탐지 및 알림 서비스)

  • Park, Juyoung;Lee, Heuisoon;Kang, Kyungtae;Kim, Byung-Hoe
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, we propose a system to detect various damage automatically inflicted on road pavement by collecting and analyzing data from acceleration and camera sensors in real time. The proposed system sends the collected images, acceleration signals, and GPS coordinates to the road manager and the database in the remote server, shortly after detecting the damage to the road pavement. Our study makes three key contributions. The proposed system 1) enables road managers to maintain road conditions quickly, accurately, and conveniently; 2) allows road mangers to take care of various kinds of damage to the road pavement at the initial stage; and finally 3) even makes it possible to track the damage, which suggests that the integration of a high-level decision support function becomes affordable. We tested the sensitivity and precision of the proposed system against real-time data obtained from the vehicles driving on the highway at an average speed of 100 km/h. With ten iterations, the proposed system achieved an average sensitivity of 74% and an average precision of 84% in road pavement damage detection, which is comparable with the best competing schemes.

Development of Cognition Character Model for Road Safety Facilities on Vertical Alignment Sections (종단선형구간에서의 도로안전시설물 인지특성 모형개발)

  • Lee, Soo-Beom;Kim, Jang-Wook;Kwon, Hyuk-Min
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.73-84
    • /
    • 2005
  • Highway design criteria are considering roadway safety and smooth driving maneuver. However, a certain highway alignment within design criteria often leads drivers to undesirable situation due to the differences between the original intention of design criteria and the unintended result of drivers' cognition. The differences between them often result in traffic accidents. In order to reduce accident process, highway safety facilities are installed on those roadway sections. However, the relationship between highway environments and human factors has not been deeply studied in Korea. In this study. vertical roadway sections are constructed with 3-D graphical tools. This vertical roadway sections are simulated on a driving simulator in order to identify the differences of drivers' cognition on different roadway environments. Based upon the collected data from the driving simulator, canonical correlation analysis and canonical discriminant analysis of quantification theory II have been performed in order to figure out impacting factors on the degree of roadway safety. Also, based upon quantification theory I. the relationship between roadway safety facilities and the degree of safety has been analyzed.