• Title/Summary/Keyword: 도로구조 안정성

Search Result 135, Processing Time 0.03 seconds

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load (표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Kim, Duhwan;Jin, Hyunsik;Seo, Seunghwan;Park, Jaehyun;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.119-128
    • /
    • 2018
  • Limit state design has been implemented in Korea since 2015; however, there exists no specification of lateral load determination on retaining wall due to the Korean standard traffic load on retaining wall's backfill surface. The lateral load from traffic depends on lane number, standard truck's axle loads and locations, loading distance from the inner wall. The concept of equivalent height of soil accounting for traffic loadings is typically used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the Korean standard truck, based on the findings from analytical solutions using Bounessq's theory and numerical assessment using 2D finite element method. Consequently, it was found that the equivalent heights of soil from the Korean standard truck load were lower for lower retaining wall height.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Hydraulic Characteristics of Shallow Geology in Dongrae Area, Busan Megacity (부산광역시 동래지역 천부지질의 수리적 특성)

  • Ryu, Sang-Hun;Hamm, Se-Yeong;Jeong, Jae-Hyeong;Han, Suk-Jong;Cheong, Jae-Yeol;Jang, Seong;Kim, Hyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.55-68
    • /
    • 2008
  • At present underground structures such as road tunnels, railway tunnels, underground petroleum storages and radioactive waste storages are being constructed in numerous places in Korea. For the construction of underground structrues, it should be accounted for natural factors (geology, hydrogeology, soil, vegetation, topography and drainage patterns) and human-social factors (land use, urbanization, population, culture and transportation). Especially, hydrogeology should be regarded as an important factor for evaluating the safety of underground structures and their impact to groundwater system around the structures. This study aimed to recognize hydrogeological characteristics of shallow formations in the area from Dongrae crossway to Seo-Dong where 45 boreholes were drilled for the construction of Line-3 subway in Busan Megacity. Slug tests for unsaturated and saturated zones were conducted on 30 boreholes in the study area. From the result of the slug tests, it was identified that average zonal hydraulic conductivity in the unsaturated zone was higher than that in the saturated zone. Besides, the slug test result in the saturated zones may reflect hydraulic properties of the upper most part of the saturated zones.

A study on the relationship between initial and final convergence in NATM tunnels (NATM 터널 굴착시 초기 내공변위와 최종 내공변위의 상관관계 연구)

  • Kim, Bum-Joo;Hwang, Young-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • A tunnel behavior predicted in the investigation and design stage is often different from its actual behavior due to mainly the complexity of ground conditions. In a tunnel construction, therefore, it is necessary to ensure the stability of the tunnel by predicting the behaviors of the ground and the supports through observations and measurements, and modifying immediately excavation and reinforcing methods when necessary. To do so, it is important to be able to predict the final tunnel behavior based on the initial tunnel behavior as early as possible. In this study, the correlations were obtained between the initial and the final convergence by analyzing statistically the convergence measurement data, collected from two domestic road tunnels under construction using NATM. In order to estimate the unknown displacements, occurred during the period between the excavation and the first measurement, two methods were used - one is the method by means of regression analysis using a modified exponential function and the other the method by a simple linear regression analysis using the data measured within the distance from tunnel face equal to the tunnel diameter (D). Finally, the relationships were obtained between the initial and final convergence, including the non-measured displacements estimated from the two different methods, by performing linear regression analyses. The regression analysis results showed that there are clear linear relationships between the initial and final convegence and the difference between the two linear regression equations was not that large for when using the exponential function and the simple linear function to estimate the non-measured displacements.

  • PDF

A Study on the Analysis of Monitoring Settlement Considering the History of the Groundwater Level in the Dredged Landfill Area Affected by Algae (조류의 영향을 받는 준설매립지역에서 지하수위 이력을 고려한 계측침하 분석에 관한 연구)

  • Jang, Ji-Gun;Son, Su-Won;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.13-23
    • /
    • 2021
  • If roads, bridges, buildings, etc. are built on the ground with soft clay or organic soil, there may be a lot of problems in geotechnical engineering such as settlement and stability due to the large settlement and lack of bearing capacity. In extreme cases, it may appear due to shear failure or collapse of the constructed structure, so a ground improvement method is indispensable to increase the strength of the ground and to suppress settlement. In this study, the settlement according to each groundwater level condition was analyzed using the measurement results for the groundwater level conditions, one of the important factors in predicting the settlement in dredged and reclaimed ground, and the groundwater level conditions applied to the settlement analysis were proposed by comparing it with settlement generated 5 years after construction. As a result of the analysis, it is judged that it is reasonable to apply the measured groundwater level during construction and the low water ordinary neap tide (L.W.O.N.T) during load application for the groundwater level in the settlement analysis. In addition, in the case of the dredged and reclaimed ground, it is estimated that the water pressure acting on the clay layer is nonlinear, as the result of the observations of the head of water at the observation points above and below the in-situ clay layer were different.

Evaluation of Incident Detection Algorithms focused on APID, DES, DELOS and McMaster (돌발상황 검지알고리즘의 실증적 평가 (APID, DES, DELOS, McMaster를 중심으로))

  • Nam, Doo-Hee;Baek, Seung-Kirl;Kim, Sang-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.119-129
    • /
    • 2004
  • This paper is designed to report the results of development and validation procedures in relation to the Freeway Incident Management System (FIMS) prototype development as part of Intelligent Transportation Systems Research and Development program. The central core of the FIMS is an integration of the component parts and the modular, but the integrated system for freeway management. The whole approach has been component-orientated, with a secondary emphasis being placed on the traffic characteristics at the sites. The first action taken during the development process was the selection of the required data for each components within the existing infrastructure of Korean freeway system. After through review and analysis of vehicle detection data, the pilot site led to the utilization of different technologies in relation to the specific needs and character of the implementation. This meant that the existing system was tested in a different configuration at different sections of freeway, thereby increasing the validity and scope of the overall findings. The incident detection module has been performed according to predefined system validation specifications. The system validation specifications have identified two component data collection and analysis patterns which were outlined in the validation specifications; the on-line and off-line testing procedural frameworks. The off-line testing was achieved using asynchronous analysis, commonly in conjunction with simulation of device input data to take full advantage of the opportunity to test and calibrate the incident detection algorithms focused on APID, DES, DELOS and McMaster. The simulation was done with the use of synchronous analysis, thereby providing a means for testing the incident detection module.

Application of Probabilistic Neural Network (PNN) for Evaluating the Lateral Flow Occurrence on Soft Ground (연약지반의 측방유동 평가를 위한 확률신경망 이론의 적용)

  • Kim, Young Sang;Joo, No Ah;Lee, Jeong Jae;Lee, Sook Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.1-8
    • /
    • 2008
  • Recently, there have been many construction projects on soft ground with growth of industry and economy. Therefore foundation piles of abutments and(or) buildings had been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches about lateral flow have been carried out, it is still difficult to assess the mechanism of lateral flow in soft ground quantitatively. And reasonable design method for judgement of lateral flow occurrence in soft ground is not established yet. In this study, six PNN (Probabilistic Neural Network) models were developed according to input variables and database compiled from Korea and Japan for the judgment of lateral flow occurrence. PNN models were compared with present empirical methods. It was found that the developed PNN models can give more precise and reliable judgment of lateral flow occurrence than empirical methods.

Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm (역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발)

  • Kim, Joong-Hyo;Kwon, Sung-Dae;Hong, Jeong-Pyo;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.679-690
    • /
    • 2015
  • The need to remove the cause of traffic accidents by improving the engineering system for a vehicle and the road in order to minimize the accident hazard. This is likely to cause traffic accident continue to take a large and significant social cost and time to improve the reliability and efficiency of this generally poor road, thereby generating a lot of damage to the national traffic accident caused by improper environmental factors. In order to minimize damage from traffic accidents, the cause of accidents must be eliminated through technological improvements of vehicles and road systems. Generally, it is highly probable that traffic accident occurs more often on roads that lack safety measures, and can only be improved with tremendous time and costs. In particular, traffic accidents at intersections are on the rise due to inappropriate environmental factors, and are causing great losses for the nation as a whole. This study aims to present safety countermeasures against the cause of accidents by developing an intersection Traffic safety evaluation model. It will also diagnose vulnerable traffic points through BPA (Back -propagation algorithm) among artificial neural networks recently investigated in the area of artificial intelligence. Furthermore, it aims to pursue a more efficient traffic safety improvement project in terms of operating signalized intersections and establishing traffic safety policies. As a result of conducting this study, the mean square error approximate between the predicted values and actual measured values of traffic accidents derived from the BPA is estimated to be 3.89. It appeared that the BPA appeared to have excellent traffic safety evaluating abilities compared to the multiple regression model. In other words, The BPA can be effectively utilized in diagnosing and practical establishing transportation policy in the safety of actual signalized intersections.

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF

5GHz Wi-Fi Design and Analysis for Vehicle Network Utilization (차량용 네트워크 활용을 위한 5GHz WiFi 설계 및 분석)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.18-25
    • /
    • 2020
  • With the development of water internet technology, data communication between objects is expanding. Research related to data communication technology between vehicles that incorporates related technologies into vehicles has been actively conducted. For data communication between mobile terminals, data stability, reliability, and real-time performance must be guaranteed. The 5 GHz Wi-Fi band, which is advantageous in bandwidth, communications speed, and wireless saturation of the wireless network, was selected as the data communications network between vehicles. This study analyzes how to design and implement a 5 GHz Wi-Fi network in a vehicle network. Considering the characteristics of the mobile communication terminal device, a continuous variable communications structure is proposed to enable high-speed data switching. We simplify the access point access procedure to reduce the latency between wireless terminals. By limiting the Transmission Control Protocol Internet Protocol (TCP/IP)-based Dynamic Host Configuration Protocol (DHCP) server function and implementing it in a broadcast transmission protocol method, communication delay between terminal devices is improved. Compared to the general commercial Wi-Fi communication method, the connection operation and response speed have been improved by five seconds or more. Utilizing this method can be applied to various types of event data communication between vehicles. It can also be extended to wireless data-based intelligent road networks and systems for autonomous driving.