• 제목/요약/키워드: 도로건설

Search Result 1,521, Processing Time 0.027 seconds

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

Coastal erosion and countermeasures of Oahu Island (오아후섬 연안 침식 현상과 대책)

  • Dong-Yoon Yang;Min Han
    • The Korean Journal of Quaternary Research
    • /
    • v.31 no.2
    • /
    • pp.31-42
    • /
    • 2017
  • Oahu Island is the third largest island of the Hawaiian chain which located in the northern hemisphere close to the center of the Pacific Ocean and is affected by storms and tsunamis in the northern and southern hemispheres. High-wave and high-energy waves are concentrated in the winter and summer, and the Oahu Coast is always in an active erosion environment. These natural effects are likely to become more severe with global warming and sea level rise. In addition, as the anthropogenic factors, there was indiscreet flood of development on the coast until the 1972 coastal management law was enacted. However, the present coastal erosion phenomenon was not serious than thought. The cause can be found in the improvement of the coastal management of the provincial government. The Hawaiian government is no longer applying this method, which was built prior to the enactment of the Coastal Control Act, due to increased erosion and side effects at other sites. So, in Hawaii, it is mainly applied to soft revetment methods such as supplying sand or making artificial sand dunes as an erosion prevention method. In Korea, there are some places where the soft revetment method is applied partially, but it is mainly composed of hard revetment structure.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF

Beach Resort Formation and Development Processes by Fabric Construction in an Island Environment (구조물 축조에 의한 도서지역 해수욕장의 발달과정에 관한 연구 -완도군 보길면 지역을 사례로-)

  • 박의준;황철수
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.4
    • /
    • pp.474-482
    • /
    • 2001
  • The purpose of this study is to investigate the formation and development processes of beach resort by fabric construction in a island environment. The results are as follows. (1) The research area(Tong-ri beach, Bokil-myon, Chollanam-do)has been transformed to belch by sedimentary environmental change since latter half of 1800's. (2) The mean slope of beach face is 0.96°, and the difference of attitude between beach and mud flat face is 75cm. (3) The mean particle size of beach surface sediment is 3.53$\Phi$. This value is very finer than that of any other beach in Korea peninsula. But its value is coarser than that of mud flat surface sediment. (4) The particle size distribution of core sediment is become changed to fine particle in 70cm depth. This value is corresponded to difference of altitude between beach face and mud flat face. (5) The analysis of aerial photographs after 1970 indicates that sedimentation process was not brisked since 1970's. Consequently, the research ares has been developed by sedimentary environmental change for sea-level rise effect and wave height energy rise effect.

  • PDF

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar (재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석)

  • Rhee, Inkyu;Kim, Jin-Hee;Kim, Jong-Ho;Roh, Young-Sook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.388-395
    • /
    • 2016
  • This paper explores the photocatalytic sensitivity of cement mortar incorporated with recycled $TiO_2$ from waste water sludge. Basically, $TiO_2$ cluster sank down slowly to the bottom of cement mortar specimen before setting and hardening process. This leads the mismatch of $TiO_2$ concentration on the top and the bottom faces of a specimen. This poorly dispersed $TiO_2$-cement mortar naturally exhibits poor NOx removal efficiency especially on the top of cementitious structure. In architectural engineering application such as building or housing structures, one can simply filp over from the bottom so that more $TiO_2$ concentrated surface can be placed outward into the air. However, in highway pavement case, this could not be applicable due to in-situ installation of concrete pavement. Hence, the dispersion of $TiO_2$ cluster inside the cementitous material is getting important issue onto road construction application. To elaborate this issue, according to our results, silica fume, high-ranged water reducer, viscosity agent, blast furnace slag were not enhanced much of dispersion characteristics of $TiO_2$ cluster. The combination of foaming agent and accelerator of hardening with viscosity agent and small grain size of fine aggregate may help the dispersion of $TiO_2$ inside cementitious materials. Even though the enhanced dispersion were applied to the specimen, NOx removal efficiency doest not change much for the top surface of the specimen. This concurrently affected by the presence of tiny air voids and the dispersion of $TiO_2$ in that these voids could easily adsorbed NOx gas with the aid of large surface area.

A study on the optimization of tunnel support patterns using ANN and SVR algorithms (ANN 및 SVR 알고리즘을 활용한 최적 터널지보패턴 선정에 관한 연구)

  • Lee, Je-Kyum;Kim, YangKyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.617-628
    • /
    • 2022
  • A ground support pattern should be designed by properly integrating various support materials in accordance with the rock mass grade when constructing a tunnel, and a technical decision must be made in this process by professionals with vast construction experiences. However, designing supports at the early stage of tunnel design, such as feasibility study or basic design, may be very challenging due to the short timeline, insufficient budget, and deficiency of field data. Meanwhile, the design of the support pattern can be performed more quickly and reliably by utilizing the machine learning technique and the accumulated design data with the rapid increase in tunnel construction in South Korea. Therefore, in this study, the design data and ground exploration data of 48 road tunnels in South Korea were inspected, and data about 19 items, including eight input items (rock type, resistivity, depth, tunnel length, safety index by tunnel length, safety index by rick index, tunnel type, tunnel area) and 11 output items (rock mass grade, two items for shotcrete, three items for rock bolt, three items for steel support, two items for concrete lining), were collected to automatically determine the rock mass class and the support pattern. Three machine learning models (S1, A1, A2) were developed using two machine learning algorithms (SVR, ANN) and organized data. As a result, the A2 model, which applied different loss functions according to the output data format, showed the best performance. This study confirms the potential of support pattern design using machine learning, and it is expected that it will be able to improve the design model by continuously using the model in the actual design, compensating for its shortcomings, and improving its usability.

A study on the feasibility evaluation technique of urban utility tunnel by using quantitative indexes evaluation and benefit·cost analysis (정량적 지표평가와 비용·편익 분석을 활용한 도심지 공동구의 타당성 평가기법 연구)

  • Lee, Seong-Won;Chung, Jee-Seung;Na, Gwi-Tae;Bang, Myung-Seok;Lee, Joung-Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.61-77
    • /
    • 2019
  • If a new utility tunnel is planned for high density existing urban areas in Korea, a rational decision-making process such as the determination of optimum design capacity by using the feasibility evaluation system based on quantitative evaluation indexes and the economic evaluation is needed. Thus, the previous study presented the important weight of individual higher-level indexes (3 items) and sub-indexes (16 items) through a hierarchy analysis (AHP) for quantitative evaluation index items, considering the characteristics of each urban type. In addition, an economic evaluation method was proposed considering 10 benefit items and 8 cost items by adding 3 new items, including the effects of traffic accidents, noise reduction and socio-economic losses, to the existing items for the benefit cost analysis suitable for urban utility tunnels. This study presented a quantitative feasibility evaluation method using the important weight of 16 sub-index items such as the road management sector, public facilities sector and urban environment sector. Afterwards, the results of quantitative feasibility and economic evaluation were compared and analyzed in 123 main road sections of the Seoul. In addition, a comprehensive evaluation method was proposed by the combination of the two evaluation results. The design capacity optimization program, which will be developed by programming the logic of the quantitative feasibility and economic evaluation system presented in this study, will be utilized in the planning and design phases of urban community zones and will ultimately contribute to the vitalization of urban utility tunnels.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.