• Title/Summary/Keyword: 데이터 품질 평가

Search Result 698, Processing Time 0.027 seconds

Performance Analysis of Adaptive SC/MRC Diversity Combining using in AWGN (AWGN환경에서 적응형 SC/MRC 다이버시티 컴바이너 성능분석)

  • Yun, Deok-Won;Huh, Sung-Uk;Kim, Chun-Won;Choi, Yong-Tae;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.757-763
    • /
    • 2018
  • It is very difficult to achieve sufficient data rate and required quality of service due to the time-varying nature of the radio channel and various jammers such as path loss, delay, Doppler, shadowing and interference. Especially, the propagation path between the transmitting antenna and the tracking antenna mounted on the fuselage during the test and evaluation of the projectile system considered in this paper is based on the rapid movement of the projectile, the interference due to multipath fading due to the terrain, The propagation path may be blocked. In order to effectively improve the multipath fading occurring in the wireless communication system, a diversity combiner technique is required. In this paper, to derive the design and improvement schemes for the space diversity combiner technique among the diversity combiner schemes, the BER performance of maximum ratio combining (MRC) and selection combining (SC) In an adaptive SC / MRC diversity combiner that operates with MRC when it is lower than the specified threshold criterion when comparing the SNR between two signals received from the channel and operates with SC at high and combines the two received signals The BER performance of the system was compared and analyzed.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

A Study on the Activation of Pet Plant Kit Industry - Catering to the Demands of Industry Professionals - (반려식물 키트 산업의 활성화 방안에 관한 연구 - 산업 종사자의 수요를 중심으로 -)

  • Roh, Hoi-Eun;Lim, Chae-Jun;Lee, Min-Ji;Jo, Jang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.46-58
    • /
    • 2024
  • The purpose of this study is to understand the current status of the pet plant kit industry and determine the priorities for support policies to revitalize the industry. SWOT analysis assessed the industry's current state, and the Analytic Hierarchy Process (AHP) was used with industry professionals to prioritize support policies. The SWOT analysis results indicated that SO strategies involve leveraging government support policies to enhance marketing and developing eco-friendly DIY products. WO strategies include launching advertising campaigns to increase market recognition and establishing strategic partnerships to expand distribution. ST strategies focus on strengthening price competitiveness and proposing unique values, while WT strategies involve improving production processes and enhancing product quality based on consumer feedback. The AHP analysis identified 3 top-level and 12 sub-level evaluation items, with data collected from 17 expert surveys. The results showed the 'entry phase' (0.482), 'activation phase' (0.397), and 'advanced phase' (0.121) were prioritized, with 'organizing seminars' (0.181) as the most crucial subcategory and 'support for kit development' (0.020) as the least. The pet plant kit industry is in its early stages, and appropriate policy incubation can help activate the garden industry. This study provides foundational information on the industry's needs for activation.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

A Performance Comparison of Super Resolution Model with Different Activation Functions (활성함수 변화에 따른 초해상화 모델 성능 비교)

  • Yoo, Youngjun;Kim, Daehee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.303-308
    • /
    • 2020
  • The ReLU(Rectified Linear Unit) function has been dominantly used as a standard activation function in most deep artificial neural network models since it was proposed. Later, Leaky ReLU, Swish, and Mish activation functions were presented to replace ReLU, which showed improved performance over existing ReLU function in image classification task. Therefore, we recognized the need to experiment with whether performance improvements could be achieved by replacing the RELU with other activation functions in the super resolution task. In this paper, the performance was compared by changing the activation functions in EDSR model, which showed stable performance in the super resolution task. As a result, in experiments conducted with changing the activation function of EDSR, when the resolution was converted to double, the existing activation function, ReLU, showed similar or higher performance than the other activation functions used in the experiment. When the resolution was converted to four times, Leaky ReLU and Swish function showed slightly improved performance over ReLU. PSNR and SSIM, which can quantitatively evaluate the quality of images, were able to identify average performance improvements of 0.06%, 0.05% when using Leaky ReLU, and average performance improvements of 0.06% and 0.03% when using Swish. When the resolution is converted to eight times, the Mish function shows a slight average performance improvement over the ReLU. Using Mish, PSNR and SSIM were able to identify an average of 0.06% and 0.02% performance improvement over the RELU. In conclusion, Leaky ReLU and Swish showed improved performance compared to ReLU for super resolution that converts resolution four times and Mish showed improved performance compared to ReLU for super resolution that converts resolution eight times. In future study, we should conduct comparative experiments to replace activation functions with Leaky ReLU, Swish and Mish to improve performance in other super resolution models.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Development of Correction Formulas for KMA AAOS Soil Moisture Observation Data (기상청 농업기상관측망 토양수분 관측자료 보정식 개발)

  • Choi, Sung-Won;Park, Juhan;Kang, Minseok;Kim, Jongho;Sohn, Seungwon;Cho, Sungsik;Chun, Hyenchung;Jung, Ki-Yuol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.13-34
    • /
    • 2022
  • Soil moisture data have been collected at 11 agrometeorological stations operated by The Korea Meteorological Administration (KMA). This study aimed to verify the accuracy of soil moisture data of KMA and develop a correction formula to be applied to improve their quality. The soil of the observation field was sampled to analyze its physical properties that affect soil water content. Soil texture was classified to be sandy loam and loamy sand at most sites. The bulk density of the soil samples was about 1.5 g/cm3 on average. The content of silt and clay was also closely related to bulk density and water holding capacity. The EnviroSCAN model, which was used as a reference sensor, was calibrated using the self-manufactured "reference soil moisture observation system". Comparison between the calibrated reference sensor and the field sensor of KMA was conducted at least three times at each of the 11 sites. Overall, the trend of fluctuations over time in the measured values of the two sensors appeared similar. Still, there were sites where the latter had relatively lower soil moisture values than the former. A linear correction formula was derived for each site and depth using the range and average of the observed data for the given period. This correction formula resulted in an improvement in agreement between sensor values at the Suwon site. In addition, the detailed approach was developed to estimate the correction value for the period in which a correction formula was not calculated. In summary, the correction of soil moisture data at a regular time interval, e.g., twice a year, would be recommended for all observation sites to improve the quality of soil moisture observation data.

A Study on Improvement Methods of Cost Estimation in Order for the Proper Management of Street Trees (도시 가로수 관리 품셈 개선에 관한 연구)

  • Do, Yoon-Taek;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.4
    • /
    • pp.20-36
    • /
    • 2022
  • This study aims to provide basic data for high-quality street tree management by setting reasonable management items and appropriate unit prices by reviewing the adequacy of current street tree management. Currently, street tree management items, except for street tree pruning, use general landscape tree quantity per unit for the street tree management quantity per unit. KEPCO (Korea Electric Power Corporation) applied pruning items from standard electric production infrastructure and carried out the activities at an average unit price of 51% lower for heavy pruning and 39% lower for light pruning than the standard estimate. This was judged to be a level that could not maintain or increase the quality of street tree management. It was determined that an appropriate standard unit price for street tree management was necessary. To improve the quantity per unit for the proper management of street trees, it was necessary to review costs in the field. However, due to the absence of data on actual construction costs in the domestic landscape field, detailed items of the US RSMeans Building Construction Cost Data (RSMeans) were reviewed, and the actual construction costs were calculated by applying personal domestic expenses. As a result, the standard of the estimated unit showed a good ratio of 107% for heavy pruning of street tree pruning compared to the actual construction cost, but light pruning was underestimated with a 59% ratio. Shrub pruning was 82%, weeding was 92%, tree fertilization was 87%, and windbreak wall installation was 91% under-engineered. In addition, it was also confirmed that the watering by sprinkler trucks and chemical spraying were over-designed compared to the actual construction cost at the rates of 118% and 124%, respectively. Due to the specificity of the street trees, the increase in personal expenses and the input cost of equipment, such as road safety controls, were judged to be the main cause of the underestimation of items. Therefore, it is necessary to add items related to street trees and general landscape trees to the landscape maintenance items of the standard of the estimated unit.

TACT Productivity Management for Finish Works of Residential Buildings using Productivity Achievement Ratio (PAR) (공동주택 마감공사 TACT 기법 생산성 관리 - Productivity Achievement Ratio를 활용한 생산성 관리 -)

  • Joo, Seonu;Park, Moonseo;Lee, Hyun-Soo;Lee, Kwang-Pyo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.36-48
    • /
    • 2015
  • To complete various types of finish works with higher quality in much less time, TACT, which was mostly used for high-rise buildings, has been adapted to meet the needs for systematic schedule management in construction sites. However, the effectiveness of adapting TACT has not been shown as expected due to the different perspectives on productivity from both general contractor and subcontractors based on unforeseen conditions according to the types of site. Furthermore, not enough theoretical backgrounds, empirical data, and systematic approaches to solve the fundamental problems caused by each participants' different views on productivity has produced obstacles for establishing effective solutions. Therefore, this research aims to analyze the possible main reasons for having different point of views regarding productivity among various participants of residential building sites using TACT based on literature review, site survey, and interviews. Also, case study was conducted to propose obtainable productivity (OP) regression equation and productivity achievement ratio (PAR) with reduction factors (RFs) and actual productivity (AP) data from an actual construction site. The proposed outcome may assist general contractors converting output management with PPC to productivity management with actual data using PAR. On the other hand, subcontractors would be able to estimate theory-based maximum productivity of construction sites with TACT by using OP. The PAR will enhance the communication between general and sub-contractors for their decision making process. Finally, the main RFs derived from PAR could be used as essential keys for productivity management to increase the economical and operational effectiveness of the construction project.