• Title/Summary/Keyword: 데이터 추정

Search Result 3,464, Processing Time 0.034 seconds

A non-merging data analysis method to localize brain source for gait-related EEG (보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법)

  • Song, Minsu;Jung, Jiuk;Jee, In-Hyeog;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.679-688
    • /
    • 2021
  • Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

Detection of Individual Trees and Estimation of Mean Tree Height using Airborne LIDAR Data (항공 라이다데이터를 이용한 개별수목탐지 및 평균수고추정)

  • Hwang, Se-Ran;Lee, Mi-Jin;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.27-38
    • /
    • 2012
  • As the necessity of forest conservation and management has been increased, various forest studies using LIDAR data have been actively performed. These studies often utilize the tree height as an important parameter to measure the forest quantitatively. This study thus attempt to apply two representative methods to estimate tree height from airborne LIDAR data and compare the results. The first method based on the detection of the individual trees using a local maximum filter estimates the number of trees, the position and heights of the individual trees, and the mean tree height. The other method estimates the maximum and mean tree height, and the crown mean height for each grid cell or the entire area from the canopy height model (CHM) and height histogram. In comparison with the field measurements, 76.6% of the individual trees are detected correctly; and the estimated heights of all trees and only conifer trees show the RMSE of 1.91m and 0.75m, respectively. The tree mean heights estimated from CHM retain about 1~2m RMSE, and the histogram method underestimates the tree mean height with about 0.6m. For more accurate derivation of diverse forest information, we should select and integrate the complimentary methods appropriate to the tree types and estimation parameters.

A case study on calibration of computational model for a reasonable cost estimation of missile development program (A case of guidance & control system of X missile) (유도무기 연구개발사업의 합리적인 비용 추정을 위한 전산모델 보정방안 사례 연구 (X 유도무기 유도조종장치 사례를 중심으로))

  • Park, Chung-Hee
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.139-148
    • /
    • 2014
  • In recent years, computational models using parametric estimation method have been developed and used widely for efficient cost analysis. In this research, by applying experienced data from Guidance and Control Systems in Missile System field, the cost analysis for engineering model and commercial computational model(Price H, HL, M, S) are conducted and its result is analysed, so that the difference between two models and its grounds are apprehended. Comparing the calibrated value of computational model based on the data base of similar equipment and the cost from the engineering estimation, the two results are very close. It means that the credibility of data is enhanced through calibration. Also, for cost analysis of similar components in the future, the method for calibration of the computational models is also examined. When estimating development cost in this research, although many parts have been estimated through uncertain elements, the reliability could have been enhanced by applying computational model which secures objectivity. It is a very reasonable estimation method by utilizing calibration of the computational models based on existing accumulated development data.

Generating A Synthetic Multimodal Dataset for Vision Tasks Involving Hands (손을 다루는 컴퓨터 비전 작업들을 위한 멀티 모달 합성 데이터 생성 방법)

  • Lee, Changhwa;Lee, Seongyeong;Kim, Donguk;Jeong, Chanyang;Baek, Seungryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1052-1055
    • /
    • 2020
  • 본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

A Study of Depth Estimate using GPGPU in Monocular Image (GPGPU를 이용한 단일 영상에서의 깊이 추정에 관한 연구)

  • Yoo, Tae Hoon;Lee, Gang Seong;Park, Young Soo;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.345-352
    • /
    • 2013
  • In this paper, a depth estimate method is proposed using GPU(Graphics Processing Unit) in monocular image. a monocular image is a 2D image with missing 3D depth information due to the camera projection and we used a monocular cue to recover the lost depth information by the projection present. The proposed algorithm uses an energy function which takes a variety of cues to create a more generalized and reliable depth map. But, a processing time is late because energy function is defined from the various monocular cues. Therefore, we propose a depth estimate method using GPGPU(General Purpose Graphics Processing Unit). The objective effectiveness of the algorithm is shown using PSNR(Peak Signal to Noise Ratio), a processing time is decrease by 61.22%.

On Estimating Position and Velocity of Mobile Stations by Path-loss Data Base in a Cellular System (셀룰라 이동 통신 시스템에서 경로손실 데이터 베이스를 이용한 이동국의 위치와 속도 추정 방식)

  • Lee, Sang-Hun;Chung, Woo-Gon;Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.19-27
    • /
    • 1998
  • To achieve the required services in the next-generation cellular telephone systems, the size of the cell become smaller and/or is of mixed macrocells and microcells. For more efficient system control, We make use of the mobile position and velocity information, provided that the mobility information is relatively accurate. In this paper, we propose an improved version of path-loss measurement algorithm introduced in literature[11]. The microcellular structure with severe multipath fading, reflection and refraction make mobile position and velocity estimation very difficult. In the proposed method, the pre-recorded path-loss informations, called the discrete position data base, are searched to estimate the position. Velocity estimation is obtained as a difference of the position values with respect to the time difference. Moving average filter is applied to smooth the estimated velocity and to reduce the error in the estimates. We also propose a method to simplify system implementation by reducing search area for discrete area database.

  • PDF

Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving (자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정)

  • Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2023
  • Depth estimation is a key technology in 3D map generation for autonomous driving of vehicles, robots, and drones. The existing sensor-based method has high accuracy but is expensive and has low resolution, while the camera-based method is more affordable with higher resolution. In this study, we propose self-attention-based unsupervised monocular depth estimation for UAV camera system. Self-Attention operation is applied to the network to improve the global feature extraction performance. In addition, we reduce the weight size of the self-attention operation for a low computational amount. The estimated depth and camera pose are transformed into point cloud. The point cloud is mapped into 3D map using the occupancy grid of Octree structure. The proposed network is evaluated using synthesized images and depth sequences from the Mid-Air dataset. Our network demonstrates a 7.69% reduction in error compared to prior studies.

Semantic Occlusion Augmentation for Effective Human Pose Estimation (가려진 사람의 자세추정을 위한 의미론적 폐색현상 증강기법)

  • Hyun-Jae, Bae;Jin-Pyung, Kim;Jee-Hyong, Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.517-524
    • /
    • 2022
  • Human pose estimation is a method of estimating a posture by extracting a human joint key point. When occlusion occurs, the joint key point extraction performance is lowered because the human joint is covered. The occlusion phenomenon is largely divided into three types of actions: self-contained, covered by other objects, and covered by background. In this paper, we propose an effective posture estimation method using a masking phenomenon enhancement technique. Although the posture estimation method has been continuously studied, research on the occlusion phenomenon of the posture estimation method is relatively insufficient. To solve this problem, the author proposes a data augmentation technique that intentionally masks human joints. The experimental results in this paper show that the intentional use of the blocking phenomenon enhancement technique is strong against the blocking phenomenon and the performance is increased.

Response Modeling with Semi-Supervised Support Vector Regression (준지도 지지 벡터 회귀 모델을 이용한 반응 모델링)

  • Kim, Dong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.125-139
    • /
    • 2014
  • In this paper, I propose a response modeling with a Semi-Supervised Support Vector Regression (SS-SVR) algorithm. In order to increase the accuracy and profit of response modeling, unlabeled data in the customer dataset are used with the labeled data during training. The proposed SS-SVR algorithm is designed to be a batch learning to reduce the training complexity. The label distributions of unlabeled data are estimated in order to consider the uncertainty of labeling. Then, multiple training data are generated from the unlabeled data and their estimated label distributions with oversampling to construct the training dataset with the labeled data. Finally, a data selection algorithm, Expected Margin based Pattern Selection (EMPS), is employed to reduce the training complexity. The experimental results conducted on a real-world marketing dataset showed that the proposed response modeling method trained efficiently, and improved the accuracy and the expected profit.

Restoring Motion Capture Data for Pose Estimation (자세 추정을 위한 모션 캡처 데이터 복원)

  • Youn, Yeo-su;Park, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.5-7
    • /
    • 2021
  • Motion capture data files for pose estimation may have inaccurate data depending on the surrounding environment and the degree of movement, so it is necessary to correct it. In the past, inaccurate data was restored with post-processing by people, but recently various kind of neural networks such as LSTM and R-CNN are used as automated method. However, since neural network-based data restoration methods require a lot of computing resource, this paper proposes a method that reduces computing resource and maintains data restoration rate compared to neural network-based method. The proposed method automatically restores inaccurate motion capture data by using posture measurement data (c3d). As a result of the experiment, data restoration rates ranged from 89% to 99% depending on the degree of inaccuracy of the data.

  • PDF