공간 데이터와 같은 대용량의 데이터를 처리하는 시스템이나 다수의 클라이언트의 요구가 발생하는 시스템에서는 데이터에 대한 처리 비용 및 전용 비용으로 인한 서버 사이드의 병목 현상 및 질의 처리 속도의 저하라는 문제점을 갖는다. 본 논문에서는 이러한 문제점을 개선하기 위한 방법으로 미들웨어인 C-C Connector의 Method 및 프로토콜을 제안한다. 제안하는 C-C(Client To Client) Connector는 질의의 분석과 CIT(Client Information)의 검색을 통하여 인접한 클라이언트들의 캐쉬 데이터를 이용한 질의 처리의 가능 여부를 판단하며 인접 클라이언트와 요구 클라이언트 사이의 Connection을 형성함으로서 클라이언트-클라이언트의 질의 처리 및 데이터 전송 기능을 지원한다. 그리고 이러한 기능의 지원을 위한 서버, C-C Connector, 클라이언트 사이에서 수행되어지는 질의 처리의 프로토콜을 정의한다. 제안된 C-C Connector의 Method 및 프로토콜은 서버 사이드의 처리 비용을 현재 서버에 접속중인 클라이언트들에게 분배함으로서 서버 사이드의 병목현상과 질의 처리 시간의 지연이라는 문제점을 개선할 수 있으며 클라이언트 사이드에서의 반응 속도의 향상과 현재 연결된 시스템의 처리 성능을 최대한 활용할 수 있다는 장점을 갖는다.
빅 데이터 처리는 데이터의 크기나 복잡도가 커서 기존의 전통적인 데이터 처리 기법으로는 다루기 힘든 데이터의 처리를 의미한다. 싱글보드 컴퓨터를 포함하는 스마트 기기의 보급은 데이터를 처리하는 방법에 많은 영향을 미치고 있으며 이 들을 활용하여 데이터를 처리하는 기법에 대한 연구가 진행되고 있다. 본 연구에서는 빅 데이터 처리에 필요한 분산처리 시스템을 데스크톱 기기 환경이 아니라 라즈베리파이를 활용하여 하둡 분산처리 환경을 구축하는 방안을 제시한다. 또한 제안하는 시스템의 다양한 테스트를 통한 성능 분석과 스케일링의 용이성을 통해 구축한 학습 환경 구성의 효율성을 보인다.
본 논문에서는 자기조직화 형상지도(Self-organizing Feature Maps)를 사용하여 움직이는 물체에 대해 움직임의 특성을 자동으로 분석하였다. Kohonen Network는 자기조직을 형성하는 unsupervised learning 알고리즘으로서, 이 논문에서는 생태계에서의 데이터를 Patternizing하고, Clustering 하는데 사용한다. 본 논문에서 Kohonen 신경망의 학습에 사용한 데이터는 CCD 카메라로 물고기의 움직임을 추적한 좌표 데이터이며, diazinon 0.1 ppm을 처리한 물고기 점 데이터와 처리하지 않은 점 데이터를 각각 낮.밤 약 10시간동안 수집하여, \circled1처리전 낮 데이터 \circled2처리전 밤 데이터 \circled3처리전 낮 데이터 \circled4처리후 밤 데이터 각각 4개의 group으로 분류한 후, Kohonen Network을 사용하여 물고기의 행동 차이를 분석하였다.
지난 10년간 데이터의 폭발적인 증가로 우리는 빅데이터 시대를 맞이하게 되었다. 특히, 최근 몇 년 사이 소셜 네트워크의 발전으로 인해 발생하는 데이터의 양이 증가하면서, 이를 처리하기 위한 시스템으로 하둡이 등장하였다. 이전에는 저장 및 처리할 수 없었던 대용량 데이터를 오픈소스인 하둡의 등장으로 누구나가 대용량 데이터를 처리할 수 있는 시스템을 운영할 수 있게 된 것이다. 대규모 처리 분석을 위한 소프트웨어 프레임워크인 하둡은 클라우드 컴퓨팅의 대표적인 기술로 널리 사용되고 있다. 하둡은 크게 데이터의 저장을 담당하는 HDFS(Hadoop Distribute File System)와 데이터를 처리하는 맵리듀스로 나뉜다. 본 논문에서는 기존의 MapReduce와 차세대 맵리듀스로 불리는 YARN을 비교 분석하고 맵리듀스의 용도와 효율적인 활용방안을 제시한다.
최근 데이터의 양이 급격하게 증가하면서 빅데이터의 시대가 도래했다. 빅데이터는 형식이 없는 비정형 데이터이므로 기존의 정형 데이터 처리 방법으로는 분석 및 데이터 처리가 불가능해졌다. 또한, 범죄예방에 대한 관심이 증가하면서, 범죄 데이터 분석의 수요가 증가하고 있다. 본 연구에서는 비정형 범죄 데이터를 분석, 예측 등의 전산처리를 하기 위한 정규화 메트릭을 설정하는 방안을 제안하고자 한다.
최근 대용량의 스트림 데이터를 분산 처리하기 위한 연구들이 진행되고 있다. 본 논문에서는 빅데이터 환경에서 실시간 스트림 데이터의 점진적 처리 기법을 제안한다. 제안하는 기법은 처음 스트림 데이터가 입력되면 임시 큐에 데이터를 저장하고 마스터 노드에 저장되어 데이터와 비교과정을 통해 마스터 노드에 동일한 데이터가 있는 경우 마스터 노드에서 가지고 있는 노드의 정보를 이용하여 해당 노드의 메모리에서 기존 처리 결과를 재사용한다. 기존 처리 결과가 없다면 처리하고 처리 결과를 메모리에 저장한다. 분산 환경에서 점진적인 스트리밍 데이터 처리를 위해 노드의 작업 지연을 계산하여 노드의 부하를 파악하고 처리 시간 계산을 통해 각 노드의 성능을 고려한 잡 스케쥴링 기법을 제안한다. 제안하는 기법의 우수성을 보이기 위해 기존 기법과의 질의 수행 시간 비교를 위한 성능평가를 수행한다.
단일 센서기기로부터 수집된 데이터와는 다르게 대용량의 데이터는 입력데이터의 구성 및 크기가 가변적이고, 처리 완료시점을 예측할 수 없는 특징을 갖고 있다. 상황인지 시스템이 이러한 환경의 요구사항을 적용하게 되면 컨텍스트 표현방법과 처리모듈들이 개별로 구성되어 해당 입력자료에 대한 호출 및 처리루틴이 복잡하게 구현될 수 있는 문제점이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서 제안하는 처리방법은 온톨로지 기반의 지식표현을 통해 컨텍스트를 표현하고, 대용량의 데이터 처리결과를 반환하는 모듈의 중복 실행을 방지하여 컨텍스트 정보를 제공하기 위한 동작순서를 함께 기술한다. 실험에서는 헬스케어 환경에서 발생하는 센싱데이터 중 대용량의 데이터 처리결과를 필요로 하는 서비스에 대해 기술하고, 기존의 센싱데이터를 바탕으로 서비스를 제공하는 처리과정과 함께 대용량의 데이터 처리결과를 컨텍스트 정보로 제공하는 과정을 보인다.
4차 산업혁명의 기술 등장 이후 대규모 데이터 시대에서 새로운 가치 창출을 위한 데이터 정보 분석은 다양한 분야에서 시도되고 있다. 대용량 데이터를 빠르게 처리하는데 있어서 분산 데이터 처리는 이미 필수적이다. 하지만 아직 국방 분야에서 운용하고 있는 시뮬레이션들은 쌓여 있는 비정형 데이터를 활용할 수 있는 시스템이 미비하다. 이에 본 연구에서는 훈련간 발생하는 문제에 대응하기 위한 지휘결심에 가시화된 데이터를 제공하기 위해서 대대급 규모의 시뮬레이션 모델에 적용 가능한 분산 처리 플랫폼을 제안한다. 전략게임 데이터 50만개를 분석하는 과정으로, 데이터가 가지고 있는 여러 요인들 중 승리요인에 영향을 미치는 요소들을 분석할 수 있게 구현하였다. 결과적으로 상위 10%에 있는 팀들의 데이터를 분석하는 과정에서의 분산처리 사용한 결과를 측정 및 비교 하였다.
센서 네트워크에서 발생하는 데이터를 저장하고, 효율적으로 질의를 처리하는 기법에 대한 많은 연구가 이루어지고 있다. 대표적인 연구로 데이터 중심 저장 기법이 있다. 데이터 중심 저장 기법의 경우 질의를 효과적으로 처리하기 위해 수집한 데이터 값에 따라 저장 될 센서 노드를 지정하고, 질의 처리를 위해 질의에 해당하는 데이터를 저장하는 노드에서만 데이터를 수집한다. 하지만 노드의 결함이 발생하면 결함 노드에 저장 되어 있는 전체 데이터가 소실 됨에 따라 질의 결과 정확도가 저하 되는 문제점이 발생한다. 이러한 문제를 해결하기 위해, 본 논문에서는 데이터 중심 저장 기법에서 노드 결함에 따른 데이터 소실이 발생하여도 높은 정확도를 보이는 인-네트워크 질의 처리 기법을 제안한다. 데이터 소실이 발생 하였을 경우 선형 회귀 분석 기법을 이용하여 소실 된 영역에 해당하는 보정 모델을 생성하고, 이를 통해 가상의 데이터를 포함한 질의 결과를 반환한다. 제안하는 기법의 우수성을 보이기 위해 시뮬레이션을 통해 기존의 데이터 중심 저장 기법과 성능을 비교하였으며, 그 결과 평균 98% 이상의 질의 결과 정확도를 보였고, 질의 처리 시 기존 기법에 비교하여 약 80% 이상의 에너지 소모를 감소 시켰다.
스트림 데이터 처리는 여러 응용 분야에서 많은 관심을 가지고 활발한 연구가 수행되고 있다. 특히 모니터링, 센서 네트워크 등의 응용 분야에서 끊임없이 생성되는 대량의 스트림 데이터에 대한 효율적인 처리 요구가 높아지고 있다. 본 논문에서는 스트림 데이터에 대한 연속 질의처리 시스템 모델을 개발하고 성능을 평가한다. 스트림 데이터 모델로 웹상의 데이터 교환 표준으로 자리잡은 XML을 사용하였고 연속 질의는 XQuery에 시구간을 추가한 형태로 표현하였다. 제시된 시스템에서는 질의 처리의 성능 향상을 기하기 위해 질의 결과 값을 백그라운드 처리를 통해 생성하고 결과 값을 실체화하여 후속 질의의 결과 계산에 이용하는 기법을 제공한다. 성능 평가 실험을 통해서 XML 스트림 데이터 처리를 위한 제시한 시스템의 타당성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.