• 제목/요약/키워드: 데이터 정규화

검색결과 476건 처리시간 0.022초

모바일 환경에서의 디지털 서명을 위한 XML 정규화 시스템 (A XML Canonicalization System for Digital Signature on Mobile Environment)

  • 우뢰;홍현우;윤화묵;최봉규;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.803-806
    • /
    • 2007
  • 이동 통신기술의 발달로 모바일 환경에서 대량의 데이터 전송이 가능해졌고, 이를 기반으로 다양한 모바일 서비스가 제공되고 있다. 특히 전자서명을 사용하여 제공되는 서비스들은 XML로 기술된 전자서명 정보를 단말 간에 송수신한다. 이때 다양한 물리적 문서형태를 허용하는 XML의 특성은 어플리케이션에서의 전자서명 유효성 검증 문제를 유발한다. 이는 W3C에서 제정한 Canonical XML 1.0 표준의 XML 정규화를 통해 해결이 가능하지만, XML 네임스페이스에서의 속성 상속 문제로 인해 제한적인 해결책만을 제시한다. 이를 해결하기 위해 W3C에서 Canonical XML 1.1을 표준화 중에 있으며 Candidate 권고안까지 진행되어 표준화를 앞두고 있다. 이에 본 논문에서는 모바일 환경에서의 보다 폭넓은 XML 정규화를 지원하기 위해 W3C에서 표준화 중인 Canonical XML 1.1 표준을 기반으로 XML 문서의 논리적 상호 동등성을 보장하는 XML 정규화 시스템을 설계 및 구현하였다.

  • PDF

고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템 (Gait-based Human Identification System using Eigenfeature Regularization and Extraction)

  • 이병윤;홍성준;이희성;김은태
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2011
  • 본 논문에서는 고유특징 정규화 및 추출 기법(ERE: Eigenfeature Regularization and Extraction)을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템을 제안한다. 먼저 카메라 센서에서 취득한 걸음걸이 시퀀스로부터 사용자 인식을 위한 특징 정보로 걸음걸이 에너지 영상(GEI: Gait Energy Image)을 생성한다. 학습 단계에서는 갤러리 걸음걸이 에너지 영상에 ERE를 적용하여 정규화된 변환행렬을 획득하여 고유공간(eigenspace)에 사상된 특징정보를 구하고, 검증 단계에서는 걸음걸이 에너지 영상을 학습단계에서 생성한 고유공간에 사상하여 최근접 이웃 분류기를 이용하여 사용자를 인식한다. 제안한 시스템의 유효성 검증을 위해 CASIA 걸음걸이 데이터셋 A를 이용하여 실험하였고, 기존 연구에 비해 인식 정확도 면에서 우수한 성능을 보여주었다.

입출력구조와 신경망 모델에 따른 딥러닝 기반 정규화 기법의 성능 분석 (Performance Analysis of Deep Learning-based Normalization According to Input-output Structure and Neural Network Model)

  • 류창수;김근환
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.13-24
    • /
    • 2024
  • 본 논문에서는 다양한 신경망 모델과 입출력 구조에 따른 정규화 기법의 성능을 비교 분석하였다. 분석을 위해 균등한 잡음과 최대 3개의 간섭 신호가 있는 잡음 환경에 대한 시뮬레이션 기반의 데이터 세트를 사용하였다. 실험 결과, 잡음 분산을 직접 출력하는 End-to-End 구조에 대해서 1-D 콘볼루션 신경망과 BiLSTM 모델을 사용할 경우 우수한 성능을 보였으며, 특히 간섭 신호에 대해 강건한 것으로 분석되었다. 이러한 결과는 다층 퍼셉트론 신경망과 트랜스포머보다 1-D 콘볼루션 신경망 및 BiLSTM 모델이 귀납적 편향이 강하기 때문에 나타난 것으로 판단된다. 이 논문의 분석 결과는 향후 딥러닝 기반 정규화 기법 연구에 유용한 기준점으로 활용될 수 있을 것으로 기대된다.

정규화 입력을 사용한 신경망 알고리즘에 의한 냉동기의 부분 고장 검출 (The Partial Fault Detection of an hir-Conditioning System by the Neural Network Algorithm using Normalized Input Data)

  • 한도영;황정욱
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.159-165
    • /
    • 2003
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. To detect partial faults of the air-conditioning system, a neural network algorithm may be used. In this study, the neural network algorithm using normalized input data by the standard deviation was applied. And the [7$\times$10$\times$10$\times$1] neural network structure was selected. Test results showed that the neural network algorithm using normalized input data was very effective to detect the condenser fouling and the evaporator fan fault of an air-conditioning system.

볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법 (Cell-Based Wavelet Compression Method for Volume Data)

  • 김태영;신영길
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권11호
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.

깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구 (A Study on Tire Surface Defect Detection Method Using Depth Image)

  • 김현석;고동범;이원곡;배유석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.211-220
    • /
    • 2022
  • 최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.

시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식 (Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models)

  • 김혜숙;김인철
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.927-934
    • /
    • 2014
  • 본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.

비용함수와 파라미터를 이용한 효과적인 디지털 데이터 기계학습 방법론 (An efficient machine learning for digital data using a cost function and parameters)

  • 지상민;박지은
    • 디지털융복합연구
    • /
    • 제19권10호
    • /
    • pp.253-263
    • /
    • 2021
  • 기계학습은 학습에 이용되는 학습 데이터와 데이터를 예측할 인공신경망을 이용하여 비용함수를 만들고, 비용함수를 최소화시키는 파라미터들을 찾는 과정이다. 파라미터들은 비용함수의 그래디언트 기반 방법들을 이용하여 변화하게 된다. 디지털 신호가 복잡할수록, 학습하고자 하는 문제가 복잡할수록, 인공신경망의 구조는 더욱 복잡해지고 깊어진다. 복잡하고, 깊어지는 인공신경망 구조는 과적합(Over-fitting) 문제를 발생시킨다. 과적합 문제를 해결하기 위하여 파라미터의 가중치 감소 정규화 방법이 사용되고 있다. 우리는 이러한 방법에서 추가로 비용함수의 값을 이용한다. 이러한 방법으로 기계학습의 정확도가 향상되는 결과를 얻었으며 이는 수치 실험을 통하여 우수성이 확인된다. 이러한 결과는 기계학습을 통한 인공지능의 폭넓은 데이터에 대한 정확한 값을 도출한다.

이종의 OCT 기기로부터 생성된 볼륨 데이터로부터 심층 컨볼루션 신경망을 이용한 AMD 진단 (AMD Identification from OCT Volume Data Acquired from Heterogeneous OCT Machines using Deep Convolutional Neural Network)

  • 권오흠;정유진;권기룡;송하주
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.124-136
    • /
    • 2018
  • 신경망을 이용하여 OCT 영상을 분석하고 다양한 망막 질환을 자동 진단하는 것에 관한 연구들이 활발하게 이루어지고 있다. 이러한 연구가 현실에 적용되기 위한 하나의 중요한 요건은 학습된 신경망이 학습에 사용된 데이터와는 다른 기기에서 생성된 데이터에 대해서도 성능의 큰 하락 없이 일반화될 수 있어야 한다는 것이다. 본 논문에서는 심층 CNN을 이용하여 OCT 영상으로부터 노년기황반변성(AMD)을 자동 진단하는 것을 다룬다. 하나의 OCT 기기로부터 획득한 데이터 셋을 이용하여 신경망을 학습시킨 후 다른 OCT 기기로부터 생산된 이미지를 테스트한 결과 상당한 성능의 하락을 관찰할 수 있었다. 이러한 성능의 하락을 방지하기 위해서 OCT 이미지를 정규화 하는 기법을 제안하고 실험을 통해 그 효과를 분석하였다. 제안한 기법은 OCT 이미지를 분할하여 망막에 해당하는 영역을 찾아낸 후 이미지 내에서 망막 영역이 수평에 가까운 기울기를 가지도록 정렬(align)하여 형태적인 측면에서 OCT 이미지를 정규화 하는 것을 목적으로 한다. 실험을 통하여 제안한 기법이 이종의 기기에서 생성된 OCT 이미지로부터 AMD를 자동진단 하는데 있어서 상당한 성능의 향상을 달성함을 보였다.

고압 하에서 녹연석의 압축성에 대한 연구 (Compressibility Study of Pyromorphite at High Pressure)

  • 김영호;이누리
    • 한국광물학회지
    • /
    • 제29권4호
    • /
    • pp.191-198
    • /
    • 2016
  • 인회석 광물 군에 속하는 녹연석($Pb_{4.85}(P_{1.02}O_4)_3Cl_{1.04}$)에 대한 상온-고압 상태방정식 연구를 시행하였다. 대칭형 다이아몬드 앤빌기기를 이용하여 33.4 GPa까지 압력을 증가시키면서 각분산 X-선 회절법과 방사광을 이용하여 회절 데이터를 검출하였으며, 시료에 가해준 압력은 루비 형광파의 파장변화를 측정하여 결정하였다. 본 고압실험에서 시행한 압력의 범위 내에서 상변이는 관찰되지 않았으며, 정압상태에서 체적탄성률($K_0$)은 $K{_0}^{\prime}=13(2)$일 때 80(7) GPa로 계산되었다. 본 연구에서 결정된 상온상태에서 녹연석의 체적탄성률 신뢰도를 정규화압력 및 정규화응력변형 분석을 하여 평가하였다.