• Title/Summary/Keyword: 데이터 스크리닝

Search Result 23, Processing Time 0.028 seconds

Implementation of Hybrid Firewall System (혼합형 방화벽 시스템 구현 연구)

  • Jung, Ji-Moon; Woo, Sung-Gu;Lee, Syng-Ho;Choi, Sung
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.364-367
    • /
    • 2000
  • 본 논문은 스크리닝 라우터에서 패킷 필터 규칙을 통과한 모든 트래픽이 베스쳔 호스트로 전달되도록 스크린드 호스트 게이트웨이를 사용하였으며, 스크린드 호스트 게이트웨이의 단점인 스크리닝 라우터의 경로정보가 내부 네트워크로 직접 전달되지 않도록 듀얼-홈드 게이트웨이를 사용하였다. 듀얼-홈드 게이트웨이에서는 두 개의 네트워크 인터페이스간에 트래픽이 직접 전달되지 않기 때문에 응용 게이트 웨이 서버를 통해서 트래픽이 전달되고 모든 접속기록이 베스쳔 호스트에 기록되도록 하였다. 또한 외부 네트워크와 내부 네트워크 사이에 완충지역인 DMZ를 두어 공개 서버를 사용하기 쉽게 구현하여, 스크리닝 라우터와 스크린드 호스트 게이트웨이의 문제점을 해결하는 효과적인 혼합형 방화벽 모델을 제안하고자 한다.

  • PDF

High-Capacity Li-Ion 18650 Cell Screening Comparison and Analysis by Vibration and Shock for Battery Pack (배터리팩을 위한 진동·충격별 고용량 리튬이온 18650 셀 스크리닝 비교·분석)

  • Lee, Dongyoon;Yoon, Chang-O;Lee, Pyeongyeon;Kim, Jonghoon;Jang, Minho;Lim, Cheolwoo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.458-459
    • /
    • 2018
  • 배터리팩에 사용되는 리튬이온 배터리는 제조공정 과정에 따라 각각의 배터리 마다 부피에 의한 물리적 특성, 내부 저항, 자가 방전률, 셀 용량, 배터리 노화 속도 등 여러 가지 특성이 다르다. 배터리 팩의 효율적 운용을 위해 이러한 단위 셀 간편차를 최소화 하는 것이 필요하다. 본 논문에서는 두 종류의 고용량 리튬이온 배터리를 선정하여 진동 충격 실험 전 후 개방 회로 전압(open circuit voltage, OCV)를 측정하고 Matlab을 사용하여 비교 분석 하였다. OCV 비교 분석 데이터를 이용하여 통계적 분석 기반 셀 스크리닝을 진행하였고 이에 대한 결과를 비교 분석하였다.

  • PDF

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Data Analysis Methods for Quantitative Proteomics Research

  • Gwon Kyeong-Hun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.38-44
    • /
    • 2006
  • 프로테오믹스는 생물체 안에 포함되어 있는 단백질을 통합적으로 연구하는 학문이다. 단백질을 동정(Protein identification)하고, 단백질의 상태를 분석(Protein characterization)하며, 단백질의 양적 변화를 관찰(Protein quantitation)한다. 유전자로부터 mRNA 로 복제되고 codon 의 규칙에 따라 합성되는 단백질이 세포 내에 얼만큼 존재하는가라는 단백질의 양적인 변화는 세포 내의 환경에 따라 시시각각 변화할 수 있으며, 이러한 변화의 추적은 단백질의 기능을 밝히는 기초자료로서 중요성을 가진다. 특히 질병의 조기 진단을 위한 바이오마커를 발굴하기 위한 스크리닝 역할로서, 단백질의 발현 양상을 비교하는 프로테오믹스는 기대를 모으고 있다. 단백질에 대한 분석, 특히 질량분석기에 의해 초고속으로 대량의 단백질 데이터를 생산하는 프로테오믹스의 연구는 정량적인 단백질 발현양상 분석의 정확도를 높이기 위해 다양한 실험기법과 데이터 분석기법을 동원하고 있다. 이번 발표에서는 프로테오믹스에서 단백질의 양을 측정하기 위한 실험 방법들과 그에 따른 데이터 분석 방법들을 소개하고자 한다. 프로테오믹스 연구의 초창기부터 사용되어온 2차원 전기영동법에 의해 생성되는 2D-gel image 에서의 spot 분석법으로부터, 탄뎀 질량분석기를 사용하는 ICAT, iTRAQ 등의 labeling 방법에 의한 정량분석, 그리고 질량분석기의 정확도를 최대한으로 활용하는 label-free 방법에 대한 기본 개념을 살펴보고 데이터 분석 기술의 적용 방법을 알아본다.

  • PDF

Formalized Web-based Data Searching System for GRID Environment (그리드 환경을 위한 정형화된 웹 기반 데이터 검색 시스템)

  • Lee, Sang-keon;Hwang, Seog-chan;Choi, Jae-young;No, Kyoung-Tai
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.75-80
    • /
    • 2004
  • To interact database data with GRID system, implementation and installation of data manipulation module which manipulates database data and its index is required. Developing a search system searching data on web-based database, and integrating it with grid system, it is possible that searching data on web and use it directly on GRID system without independent data module. So, we can build easy and effective grid system, and the system could have more flexible architecture adapting data change. In this paper, we propose a searching system which interacting web-based database with GRID systems. We integrated the searching system with a bio god system which runs virtual screening jobs. As a result, UB Grid (Universal Bio Grid) is constructed. Developer could reduce time and effort required to integrate web data to GRID system, and user could use UB Grid system easily and effectively.

Construction of CT Image data Automatic Recognition System for Diagnosis of Urinary Stone Based on AI Plaform (인공지능 플랫폼기반 요로결석진단을 위한 CT 영상 데이터 자동판독 시스템 구축)

  • Noh, Si-Hyeong;Lee, Chungsub;Kim, Tae-Hoon;Lee, Yun Oh;Park, Sung Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.928-930
    • /
    • 2020
  • 본 논문은 인공지능 플랫폼 기반의 요로결석 진단을 위한 CT 영상 데이터 자동판독 시스템에 대해 기술하고자 한다. 제안한 시스템은 웹 기반의 플랫폼을 기반으로 하며, 인공지능 기반의 진단 알고리즘을 장착하여 빠르게 요로결석 환자의 스크리닝에 목적을 두고 있다. 병원정보시스템의 PACS와 EMR과 연계와 Deep learning 진단 알고리즘을 적용한 요로결석 자동판독 시스템을 개발하였다. 특히, 기 구축된 인공지능 플랫폼을 통해 추출한 데이터셋을 기반으로 진단 알고리즘 개발 방법과 수행 결과를 보인다. 제안한 시스템은 요로결석 진단과 수술여부에 의사결정지원 시스템으로 임상에서 활용될 것으로 기대하고 있다.

Improvement of Basis-Screening-Based Dynamic Kriging Model Using Penalized Maximum Likelihood Estimation (페널티 적용 최대 우도 평가를 통한 기저 스크리닝 기반 크리깅 모델 개선)

  • Min-Geun Kim;Jaeseung Kim;Jeongwoo Han;Geun-Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, a penalized maximum likelihood estimation (PMLE) method that applies a penalty to increase the accuracy of a basis-screening-based Kriging model (BSKM) is introduced. The maximum order and set of basis functions used in the BSKM are determined according to their importance. In this regard, the cross-validation error (CVE) for the basis functions is employed as an indicator of importance. When constructing the Kriging model (KM), the maximum order of basis functions is determined, the importance of each basis function is evaluated according to the corresponding maximum order, and finally the optimal set of basis functions is determined. This optimal set is created by adding basis functions one by one in order of importance until the CVE of the KM is minimized. In this process, the KM must be generated repeatedly. Simultaneously, hyper-parameters representing correlations between datasets must be calculated through the maximum likelihood evaluation method. Given that the optimal set of basis functions depends on such hyper-parameters, it has a significant impact on the accuracy of the KM. The PMLE method is applied to accurately calculate hyper-parameters. It was confirmed that the accuracy of a BSKM can be improved by applying it to Branin-Hoo problem.

Human Motion Recognition using Fuzzy Inference System (인체동작구분 퍼지추론시스템)

  • Jin, Gye-Hwan;Lee, Sang-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.722-727
    • /
    • 2009
  • The technology of distinguishing human motion states is required in the areas of measuring and analyzing biosignals changing according to physical activities, diagnosing sleep disorder, screening the effect of treatment, examining chronic patients' kinetic state, prescribing exercise therapy, etc. The present study implemented a fuzzy inference system based on fuzzy rules that distinguish human motion states (tying, sitting, walking, and running) by acquiring and processing data of LAA, TAA, L-MAD, and T-MAD using ADXL202AE of Analog Devices embedded in an armband. The membership degree and fuzzy rules in each area of input (LAA, TAA, L-MAD, and T-MAD) and output (tying, sitting, walking, and running) data used here were determined using numeric data obtained from experiment. In the results of analyzing data for simulation generated in order of tying$\rightarrow$walking$\rightarrow$running$\rightarrow$tying, the sorting rate for motion states tying, sitting, walking, and running was 100% for each motion.

A machine learning model for the derivation of major molecular descriptor using candidate drug information of diabetes treatment (당뇨병 치료제 후보약물 정보를 이용한 기계 학습 모델과 주요 분자표현자 도출)

  • Namgoong, Youn;Kim, Chang Ouk;Lee, Chang Joon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • The purpose of this study is to find out the structure of the substance that affects antidiabetic using the candidate drug information for diabetes treatment. A quantitative structure activity relationship model based on machine learning method was constructed and major molecular descriptors were determined for each experimental data variables from coefficient values using a partial least squares algorithm. The results of the analysis of the molecular access system fingerprint data reflecting the candidate drug structure information were higher than those of the in vitro data analysis in terms of goodness-of-fit, and the major molecular expression factors affecting the antidiabetic effect were also variously derived. If the proposed method is applied to the new drug development environment, it is possible to reduce the cost for conducting candidate screening experiment and to shorten the search time for new drug development.

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.