본 논문에서는 혼합형 데이터에 대한 특징 선별 기법의 효율성을 비교하기 위해 특징 필터링과 특징 래핑을 통한 특징 선별 후, 클래스 분류 성능을 측정하였다. 혼합형 데이터는 숫자형 특징과 범주형 특징이 함께 혼합되어 있으므로, 숫자형 특징을 범주형 특징으로 이산화를 하여 단일형 데이터로 변환한 뒤 특징 선별 기법 등을 적용할 수 있다. 본 연구에서는 혼합형 데이터를 전처리하여 단일형 데이터로 변환하고, 널리 활용되는 특징 필터링 기법과 특징 래핑 기법을 통해 클래스 분류 성능을 높일 수 있는 특징 집합을 선별하였다. 선별된 특징 집합을 통한 클래스 분류 성능을 비교한 결과, 특징 필터링에 비해 특징 래핑을 통해 선별한 특징 집합을 활용하여 클래스 분류를 하였을 때 분류 정확도가 높은 것을 확인할 수 있었다.
본 논문에서는 새로운 비지도 특징 선별 기법을 제안한다. 기존 비지도 방식의 특징 선별 기법들은 특징을 선별하기 위해 가상의 레이블 데이터를 정하고 주어진 데이터를 이 레이블 데이터에 사영하는 회귀 분석 방식으로 특징을 선별하였다. 하지만 가상의 레이블은 데이터로부터 생성되기 때문에 사영된 공간이 비슷하게 형성될 수 있다. 따라서 기존의 방법들에서는 제한된 공간에서만 특징이 선택될 수 있었다. 이를 해소하기 위해 본 논문에서는 직교 사영과 저랭크 근사를 이용하여 특징을 선별한다. 이 문제를 해소하기 위해 가상의 레이블을 직교 사영하고 이 공간에 데이터를 사영할 수 있도록 한다. 이를 통해 더 주요한 특징 선별을 기대할 수 있다. 그리고 사영을 위한 변환 행렬에 저랭크 제한을 두어 더 효과적으로 저차원 공간의 특징을 선별할 수 있도록 한다. 이 목표를 달성하기 위해 본 논문에서는 비용 함수를 설계하고 효율적인 최적화 방법을 제안한다. 여섯 개의 데이터에 대한 실험 결과는 제안된 방법이 대부분의 경우 기존의 비지도 특징 선별 기법보다 좋은 성능을 보여주었다.
사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.
본 연구에서는 가우시안 과정회귀방법을 소개하고 시계열 마이크로어레이 유전자 발현데이터에 대해 가우시안 과정회귀를 적용한 사례를 보이고자한다. 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용한 유전자를 선별방법에 대한 모의실험을 통해 민감도, 특이도, 위발견율 등을 계산하여 선별방법으로의 활용성을 보였다. 실제 효모세포주기 데이터에 대해 제곱지수공분산함수를 고려한 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용하여 차변화된 유전자를 선별한 후, 선별된 유전자들에 대해 가우시안 모형기반 군집화를 하고 실루엣 값으로 군집유효성을 보였다.
최근 딥러닝 환경의 확산으로 인하여 데이터셋 생성의 중요성이 높아지고 있어, 효율적인 데이터 셋 생성을 위하여 GAN을 활용하여 데이터를 증강시키고 있다. 그러나 GAN을 활용하여 생성되는 데이터에는 학습 초기 발생하는 문제점 및 생성되는 영상 내에 픽셀 깨짐 현상이 발생하는 등 여러 문제점이 발견되고 있다. 본 논문에서는 기존 GAN에서 발생하는 여러 문제점을 해결하기 위하여 파손 영상 데이터 선별 알고리즘을 구현하고자 한다. 파손 영상 선별 알고리즘은 영상 내의 히스토그램 분포를 분석하고 해당 결과값이 지정한 임곗값에 만족하는지에 따라 생성된 영상의 저장 여부를 결정하도록 구현하였다.
국내 공공기관에서 행정정보 데이터세트는 체계적인 관리가 필요한 전자기록물로 인식된다. 이와 관련해 최근 국가기록원과 학계를 중심으로 기록관리 실행을 위한 구체적인 방안이 논의되고 있다. 본 연구의 목적은 향후 공공기관의 기록관리 실무 현장에서 데이터세트 평가선별 시 고려할 사항과 행정정보 데이터세트의 가치를 효과적으로 파악할 수 있는 평가지표의 개선방안을 도출하는 것이다. 본 논문은 이론적 배경 및 데이터세트의 평가선별 현황을 분석하여 데이터세트 평가선별에 필요한 고려사항을 도출하고, 기존 연구에서 제시된 평가지표의 개선방안을 제안하였다. 본 연구의 결과가 향후 공공기관 데이터세트 관리체계 정비와 관리 프로세스 보완에 관한 논의 활성화로 이어지기를 기대한다.
표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 f1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 f1 19.38, EM 4.22가 증가한 성능을 보였다.
인공지능 기반의 생활폐기물의 인식 및 선별에서, 선별 정확도의 저하는 인식 대상의 형태적 다양성과 학습데이터 부족 및 불균등성에 기인한다. 본 연구에서는 비전 인공지능 기반의 효과적인 폐기물 선별을 위한 인식 시스템 및 감독학습 기반의 인공지능 학습 기법을 제안한다. 생활폐기물 중 순환자원적 가치가 높은 CAN, PET, 그리고 이와 형상적으로 유사한 폐기물에 대해 본 연구에서 제안된 시스템에서 물체원형 및 훼손된 형태의 총 18 종 이미지 데이터를 대상으로, 감독학습기반의 인공지능 모델 제작에서 최적의 데이터 레이블링을 위한 분류체계를 제시한다.
데이터 탐색은 수집한 데이터를 다양한 각도에서 관찰 및 이해하는 과정으로 데이터 구조 및 특성 분석을 통해 데이터의 분포와 상관관계를 파악하는 과정이다. 일반적으로 산사태는 다양한 인자들에 의해 유발되고 발생 지역에 따라 유발 인자들이 미치는 영향이 상이하기 때문에 산사태 취약성 분석 이전에 데이터 탐색을 통해 유발 인자 사이의 상관관계를 파악하고 특징적인 유발 인자를 선별한다면 효과적인 분석을 수행할 수 있다. 따라서 본 연구는 데이터 탐색이 예측 모델의 성능에 미치는 결과를 확인하기 위해 두 단계에 걸친 데이터 탐색을 수행하여 인자를 선별하고, 선별된 유발 인자들 사이의 조합과 23개의 전체 유발 인자 조합을 활용하여 딥러닝 기반의 산사태 취약성 분석을 진행하였다. 데이터 탐색 과정에서는 Pearson 상관계수 heat map과 random forest의 인자 중요도 histogram을 활용하였으며, 딥러닝 기반 산사태 취약성 분석 결과의 정확도는 분석을 통해 획득한 산사태 취약 지수 값을 이용해 제작한 산사태 취약성 지도를 confusion matrix 기반의 정확도 검증 방법을 통해 분석하였다. 분석 결과, 전체 23개의 인자를 사용한 산사태 취약성 해석 결과는 55.90%의 낮은 정확도를 보였지만 한 단계의 탐색을 거쳐 선별한 13개 인자를 활용한 취약성 해석 결과는 81.25%의 분석 정확도를 보였고, 두 단계 데이터 탐색을 모두 수행하여 선별된 9개의 유발 인자를 활용한 산사태 취약성 분석 결과는 92.80%로 가장 높은 정확도를 보였다. 따라서 데이터 탐색을 통해 특징적인 유발 인자를 선별하고 분석에 활용하는 것이 산사태 취약성 분석에서 더 좋은 분석 성능을 기대할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.