본 연구에서는 환자 고유의 호흡 패턴을 적용하여 호흡의 규칙성을 향상 시킬 수 있는 호흡 연습장치(respiratory training system)를 개발하여, 호흡에 의한 움직임이 고려된 4D-RT (4-dimension radiation therapy) 또는 4D-CT (4-dimension computed tomography) 수행 시 효율성과 정확성을 높이고자 했다. 개발한 호흡연습장치는 푸리에 급수(Fourier series)를 기반으로 환자 고유의 호흡패턴을 만들어 환자에게 편안한 호흡 유도를 제공한다. 호흡연습장치를 사용했을 때 호흡의 규칙성 향상 정도를 알아보기 위하여 5명의 지원자를 대상으로 실험을 진행하였다. 10개의 자유호흡신호를 획득하여 실험 대상자의 고유한 호흡패턴(guiding waveform)을 만들고, 자유호흡(free breathing)을 3분 동안 시행한 후, 고유한 호흡패턴을 이용하여 호흡을 유도하는 신호모니터-호흡(guide breathing)을 3분 동안 시행하여 데이터를 획득하였다. 획득된 자유호흡과 신호모니터-호흡의 데이터를 이용하여 호흡크기(displacement)와 호흡주기(period)의 변동성을 Root mean square error (RMSE)를 적용하여 정량적으로 비교 분석하였다. 호흡의 변동성을 분석한 결과 신호모니터-호흡은 자유호흡과 비교하여 호흡크기의 경우 최대 40%, 호흡주기의 경우 최대 76%까지 RMSE 값이 감소하였으며, 모든 지원자들의 데이터를 분석한 결과 평균적으로 호흡주기의 경우 RMSE 값이 55% 감소되었고, 호흡크기의 경우 33% 감소하였다. 본 연구에서 개발한 호흡연습장치는 실험대상자의 고유한 호흡패턴을 이용하여 규칙적인 호흡을 유도했기 때문에 피실험자는 큰 노력 없이도 신호모니터-호흡을 따라 할 수 있었다. 따라서 규칙적인 호흡을 오랜 시간 지속시킬 수 있다는 측면에서 장점을 가질 수 있으며, 4D RT, 4D CT를 시행 할 경우 규칙적인 호흡을 통해 효율성과 정확성을 향상 시킬 수 있다.
본 논문은 문서 영상을 대상으로 표, 그림, 글자 등의 각 구성요소들을 자동으로 분류하기 위한 새로운 텍스쳐 기반의 영상 분할 및 분류 방법을 제안한다. 제안한 방법은 문서 영상 분할 단계와 문서 영상 내 구성요소 분류 단계로 이루어진다. 먼저 영상 분할을 수행한 후, 분할된 영역을 대상으로 문서 영상의 구성 요소들을 분류하는데, 이때 각 구성 요소는 서로 다른 텍스쳐를 가지고 있는 영역이라는 특징을 이용한다. 분할된 영역들을 분류하기 위한 텍스쳐 특징을 추출하기 위해 다양한 텍스쳐 분석에 광범위하게 사용되는 2차원 가보필터를 이용한다. 제안한 방법은 구성 요소와 사용 언어에 대한 사전 지식을 이용하지 않으면서 문서 영상의 분할 및 구성요소 분류에서 좋은 성능을 보인다. 제안한 방법은 멀티미디어 데이터 검색, 실시간 영상 처리 등과 같은 다양한 분야에 적용 될 수 있다.
심전도 신호 분석 및 부정맥 분류는 환자를 진단하고 치료하는데 중요한 역할을 한다. 부정맥은 맥박이 불규칙한 상태로 심실빈맥(VT)이나 심실세동(VF) 환자에게 심각한 위협이 될 수 있다. 심방조기수축(APC)과 상심실성빈맥(SVT), 심실조기수축(PVC)은 심실빈맥(VT)만큼 치명적이지는 않지만 심장질환을 진단하는데 중요한 부정맥이다. 본 논문은 2~3개의 부정맥 분류만을 고려한 기존의 방법을 극복하고 다양한 부정맥을 분류하기 위한 새로운 방법을 제시한다. 심전도 신호의 특징 추출을 위해서 EMD 방법으로 신호를 분해하여 IMFs를 얻는다. 입력 데이터의 양은 분류기 성능에 영향을 미치므로 신호 데이터의 차원을 감소시키기 위해 Burg 알고리즘을 IMFs에 적용하여 AR 계수를 구하고 여러 개의 이진 분류기를 결합한 다중 클래스 SVM의 입력으로 사용한다. 최적의 SVM 성능 파라미터를 선택하고 부정맥 분류에 적용한 결과 검출의 정확성은 96.8%~99.5%였다. 실험 결과는 제안한 EMD 방법에 의한 전처리 및 특징 추출과 다중 클래스 SVM에 의한 부정맥 분류의 유용성을 보여준다.
정보통신의 비약적인 발전에 힘입어 멀티미디어 데이터는 언제 어디서든 전송 받거나 공유할 수 있게 되었다. 아날로그 형태에서 디지털의 아날로그를 형태로 빠르게 대체되고 있으며, 디지털로 신호를 표현하는 방법은 기존 사용하여 표현하는 방법에 비해 많은 장점을 가지고 있다. 하지만 디지털로 된 데이터는 언제 어디서든 대단위 복제가 가능하다. 즉, 저작권 침해, 불법 복제 및 배포, 손쉽게 위조할 수 있다는 점이 그것이다. 디지털 컨텐츠의 불법 복제와 유통은 저작자의 창작 의욕과 수입원을 차단하는 매우 중요한 문제이며, 이를 방지하기 위해서 멀티미디어 데이터의 저작권을 가진 소유자가 원하는 정보를 삽입함으로써 데이터의 저작권 보호와 복사 방지 및 불법적인 유통을 막고자 하는 기술이 개발되고 있다. 디지털 영상 정보의 보호를 위해 디지털 영상의 불법적인 내용 조작을 막고, 영상의 소유권을 보장할 수 있는 방법으로 디지털 워터마크(Digital Watermark)가 있다. 디지털 워터마크는 공개키 알고리즘이나 방화벽 등으로 해독된 영상에 대하여 부가적인 보호를 제공한다. 디지털 영상에 대한 저작권 정보, 배포자 정보 그리고 사용자 정보를 영상에 삽입함으로써 훗날 법적인 문제가 발생하였을 때 해결책을 제시할 수 있다. 본 논문에서는 디지털 영상 데이터의 정보 보호를 위해 주파수 영역에서의 웨이브릿 변환(Wavelet Transform)을 이용한 이미지 적응 디지털 워터마킹(Image-Adaptive Digital Watermarking) 방법을 제안한다. 이미지 적응 웨이브릿(Image-Adaptive Wavelet)은 영상을 주파수적으로 분해하면서 각 대역들의 공간 영역에서의 정보를 함께 지니고 JND(Just noticeable difference)을 포함한다. 이미지 적응 웨이브릿의 이러한 특성을 이용하여 다해상도 분해하고, 손실 압축(toss Compression) 이나 필터링(Filtering), 잡음(Noise) 등에 크게 영향받는 저주파 성분과 인간의 시각적으로 큰 의미를 갖는 고주파 성분의 특성을 이용하여 워터마크를 삽입한다.
단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.
방사선 진단에서 산란선 보정 그리드의 사용은 굴절되는 신호에 의한 영상의 왜곡을 방지할 수 있는 장점이 있는 반면, X-ray 영상에서 그리드 아티팩트를 발생시키는 부작용을 수반한다. 본 논문에서는 이산코사인변환(DCT: discrete cosine transform)을 사용하여, 그리드 라인을 개선하는 기법을 제안한다. X-ray 영상에서 그리드 라인은 피사체의 형태와 영상의 영역에 따라 서로 다른 특성을 보인다. 이러한 점을 해결하기 위하여 동적 분할 구조를 기반으로 DCT 변환을 적용하고, 개별 분할별로 적합한 필터전달함수를 설계하였다. 세부적으로 주파수 영역 데이터에 대하여 그리드 라인의 대역을 검출하는 알고리즘을 제안하였으며, 필터전달함수로 Kaiser 윈도우와 Butterworth 필터를 조합한 형태의 밴드스톱필터(BSF: band stop filter)를 구현하였다. 또한 블로킹 현상을 개선하기 위하여 다중구조의 영상으로부터 픽셀값을 결정하는 방법론을 제시하였다. 총 140개의 실제 X-ray 영상을 사용한 실험결과로부터 제안된 이론의 타당성을 실험적으로 평가하였다.
신뢰성 있는 통행시간정보제공과 교통정보센터의 효율적인 운영을 위해 통상 국내에서는 5분 주기로 통행시간자료를 수집하고 있다. 그러나 주기 단위로 수집할 경우 수집주기내에 링크를 통과하지 못하는 데이터는 사용할 수 없으며, 특히 혼잡시 이러한 데이터가 많이 발생하므로 혼잡정보가 늦게 제공되는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 대기행렬소멸길이와 신호현시 등을 추정하여 링크통행시간 추정하는 기법을 개발하였다 현장실험을 기반으로 MAPE와 MAE를 사용하여 평가한 결과 제안기법의 정확도는 1.98%, 4.75초로 실측치와 큰 차이를 보이지 않았다. 제안기법은 혼잡할 경우에 GPS기반으로 부족한 데이터의 절대량을 보족해 줄 수 있는 대안으로 기대된다.
디지털로 신호를 표현하는 방법은 기존 아날로그 표현하는 방법에 비해 많은 장점을 가지고 있다. 하지만 디지털로 된 데이터는 언제 어디서든 대단위 복제가 가능하다. 즉, 저작권 침해, 불법 복제 및 배포, 손쉽게 위조할 수 있다는 점이 그것이다. 디지털 영상 정보의 보호를 위해 디지털 영상의 불법적인 내용 조작을 막고, 영상의 소유권을 보장할 수 있는 방법으로 디지털 워터마크 (Digital Watermark)가 있다. 디지털 워터마크는 공개키 알고리즘이나 방화벽 등으로 해독된 영상에 대하여 부가적인 보호를 제공한다. 본 논문에서는 디지털 영상 데이터의 정보 보호를 위해 주파수 영역에서의 웨이브릿 변환 (Wavelet Transform)을 이용한 이미지 적응 디지털 워터마킹(Image-Adaptive Digital Watermarking) 방법을 제안한다. 이미지 적응 웨이브릿 (Image-Adaptive Wavelet)은 영상을 주파수적으로 분해하면서 각 대역들의 공간 영역에서의 정보를 함께 지니고 JND(Just noticeable difference)을 포함한다. 이미지 적응 웨이브릿의 이러한 특성을 이용하여 다해상도 분해하고, 손실 압축 (Loss Compression)이나 필터링(Filtering), 잡음 (Noise) 등에 크게 영향받는 저주파 성분과 인간의 시각적으로 큰 의미를 갖는 고주파 성분의 특성을 이용하여 워터마크를 삽입한다.
초음파센서는 저렴성, 단순한 구조, 기계적 강인성, 사용상의 적은 제약 등의 이점 때문에 다양한 응용분야에 적용된다. 물체의 인식에 초음파센서를 사용하기에는 낮은 분해능을 초래하는 불량한 방향성과 측정오류를 유발하는 반사성의 어려움을 내재하고 있다. 이런 문제를 개선하기 위해서 다양한 센사의 배열형태에서 많은 수의 센서를 사용하거나, 일정 수의 센서를 사용할 경우에는 센서의 배열을 기계적으로 이동시킨다. 본 논문에서는 물체의 패턴인식에 있어서 가장 기본적인 거리, 물체크기, 물체각도 값을 얻기 위해 간단하게 구성된 전자회로를 부가하여 초음파센서의 송출전압을 여러 단계로 변경시켜 얻어낸 데이터에 뉴로퍼지 기반의 지능적 계산 알고리즘을 적용하여 개선된 결과를 얻는다.
인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.