• 제목/요약/키워드: 데이터 기반 분석

검색결과 10,090건 처리시간 0.04초

시계열 데이터 특성 기반 품질 관리 방법 연구 (Data Quality Management Method base on Seasonality from Time series Data)

  • 이지훈;문재원;황지수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.93-96
    • /
    • 2022
  • IoT 기기의 보급 및 확산으로 많은 산업군에서 이를 바탕으로 시계열 데이터를 획득하고 분석하려는 시도가 확대되고 있다. 시간의 흐름에 따라 저장된 데이터들은 주기에 따라 특정 패턴을 갖는 경우가 많으며 이러한 패턴을 파악한다면 주요 산업군의 의사 결정에 도움이 된다. 그러나 IoT 기기의 수집 오류 및 네트워크 환경에 의해 대부분의 시계열 데이터들은 누락 데이터, 이상 데이터를 갖고 있으며 이를 처리하지 않고 분석할 경우 오히려 잘못된 결과를 초래한다. 본 논문에서는 패턴 파악을 위해 '시간, 일, 주, 월, 년' 등 시간의 주기를 기준으로 데이터를 분할하며 이에 기반하여 데이터셋을 재구성하고 활용 가능한 데이터와 불가능한 데이터로 구분한다. 선별된 데이터셋은 클러스터링에 적용하였으며, 제안하는 방법을 적용할 경우 주기를 갖는 시계열 데이터를 활용하는 분석 및 학습에서 더 나은 결과를 보임을 확인하였다.

  • PDF

실험계획법과 데이터 분석 기반의 제조공정 최적화를 위한 정보 시각화 (Information Visualization for the Manufacturing Process Optimization Based on Design of Experiment and Data Analysis)

  • 김재천;진선아;박영희;노성여;이현동
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권9호
    • /
    • pp.393-402
    • /
    • 2015
  • 데이터 시각화 기술은 다양한 데이터와 그 분석 결과를 쉽게 이해할 수 있도록 도와줌으로써 제조현장과 같은 실제 산업현장에서도 그 유용성이 기대되고 있다. 제조현장에서 발생하는 대량의 데이터는 제조 기술의 표준화를 위한 기반 데이터가 될 수 있으며 제조공정의 개선을 위하여 매우 중요한 역할을 수행할 수 있다. 본 논문에서는 실험계획법과 데이터 분석 기반의 제조공정 최적화를 위한 정보 시각화 방법을 제안한다. 데이터 분석 결과의 정보 시각화를 통하여 작업 현장에 이해하기 쉬운 분석 결과를 제공함으로써 다양한 불량원인을 감소시키고 제조공정을 개선시킬 수 있다.

래퍼 기반 경제 데이터 수집 시스템 설계 및 구현 (Wrapper-based Economy Data Collection System Design And Implementation)

  • 박철호;구영현;유성준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.227-230
    • /
    • 2015
  • 경제의 흐름, 주가 등을 분석, 예측을 위해 경제 뉴스, 주가 등 데이터 수집이 필요하다. 일반적인 웹 크롤러는 자동적으로 웹서버를 방문하면서 웹페이지 내용을 분석하고 URL들을 추출하면서 웹 문서를 수집한다. 반면 특정한 주제의 문서만을 수집할 수 있는 크롤러 형태도 있다. 특정 사이트에서 경제 뉴스 정보만 수집하기 위하여 사이트의 구조를 분석하고 직접적으로 데이터를 수집해올 수 있는 래퍼 기반 웹 크롤러 설계가 필요하다. 본 논문에서는 빅데이터를 기반으로, 경제뉴스 분석 시스템을 위한 크롤러 래퍼를 설계, 구현하여 경제 전문 분야의 뉴스 데이터를 수집하였다. 2000년부터 현재까지 미국 자동차 시장의 주식 데이터를 래퍼 기반으로 가져오고, 사이트 상에서의 데이터가 업데이트되는 주기를 판단하여 주기적으로 업데이트 함으로써 중복되지 않게 하였다. 그리고 미국, 한국의 경제 기사를 래퍼 기반의 웹 크롤러를 사용하여 수집하고, 향후 분석이 쉽게 데이터를 정형화 시켜 저장한다.

  • PDF

프롬프트 튜닝기법을 적용한 한국어 속성기반 감정분석 (Prompt Tuning For Korean Aspect-Based Sentiment Analysis)

  • 김봉수;전현규;최승호;김지윤;장정훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.50-55
    • /
    • 2023
  • 속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.

  • PDF

유비쿼터스 데이터 웨어하우스;RFID와 다차원 온라인 분석의 통합 (Ubiquitous Data Warehosue;Integrating RFID with Mutidimensional Online Analysis)

  • 조대연
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2005년도 춘계학술대회
    • /
    • pp.215-221
    • /
    • 2005
  • 최근 RFID가 비즈니스의 여러 분야에서 추적시스템을 중심으로 도입되기 시작하고 있으며, 이러한 시스템들이 기업에 괄목할만한 효율성의 중가와 비용의 감소를 가져올 것으로 기대되고 있다. 한편, 기업의 대용량 정보저장고로 사용되어 온 데이터 웨어하우스는 생태적으로 과거의 정적인 데이터를 분석하도록 디자인 되었으며, 온라인 분석도구인 OLAP은 데이터 웨어하우스에 저장된 정적 데이터를 분석하는 도구로 사용됨으로 의사결정 지원의 역할을 하고 있다. 그렇다면 RFID를 통하여 실시간으로 수집되는 정보가 OLAP과 결합할 경우 그 정보는 추적과 같은 단순한 정보분석이 아니라 실시간 기반의 보다 중요한 의사결정을 위하여 사용될 수 있을 것이다. 본 연구에서는 데이터 웨어하우스의 정보소스를 확장하기 위한 노력의 일환으로 RFID와 데이터 웨어하우스의 통합모델을 제안한다. 그와 함께 RFID 기기를 통하여 수집된 실시간 기반의 동적인 정보를 분석할 수 있는 OLAP을 제시하고 있다. 그리고 이러한 개념을 프로토타입으로 구현함으로서 유비쿼터스 컴퓨팅 기술의 핵심을 이루고 있는 RFID가 데이터 웨어하우스에 정보소스를 제공할 수 있으며 온라인 분석도구와 결합될 경우 보다 강력한 의사결정 지원도구가 될 수 있음을 보여 준다.

  • PDF

호스트 기반 침입 탐지 데이터 분석 비교 (A Host-based Intrusion Detection Data Analysis Comparison)

  • 박대경;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.490-493
    • /
    • 2020
  • 오늘날 정보통신 기술이 급격하게 발달하면서 IT 인프라에서 보안의 중요성이 높아졌고 동시에 APT(Advanced Persistent threat)처럼 고도화되고 다양한 형태의 공격이 증가하고 있다. 점점 더 고도화되는 공격을 조기에 방어하거나 예측하는 것은 매우 중요한 문제이며, NIDS(Network-based Intrusion Detection System) 관련 데이터 분석만으로는 빠르게 변형하는 공격을 방어하지 못하는 경우가 많이 보고되고 있다. 따라서 HIDS(Host-based Intrusion Detection System) 데이터 분석을 통해서 위와 같은 공격을 방어하는데 현재는 침입탐지 시스템에서 생성된 데이터가 주로 사용된다. 하지만 데이터가 많이 부족하여 과거에 생성된 DARPA(Defense Advanced Research Projects Agency) 침입 탐지 평가 데이터 세트인 KDD(Knowledge Discovery and Data Mining) 같은 데이터로 연구를 하고 있어 현대 컴퓨터 시스템 특정을 반영한 데이터의 비정상행위 탐지에 대한 연구가 많이 부족하다. 본 논문에서는 기존에 사용되었던 데이터 세트에서 결여된 스레드 정보, 메타 데이터 및 버퍼 데이터를 포함하고 있으면서 최근에 생성된 LID-DS(Leipzig Intrusion Detection-Data Set) 데이터를 이용한 분석 비교 연구를 통해 앞으로 호스트 기반 침입 탐지 데이터 시스템의 나아갈 새로운 연구 방향을 제시한다.

단일 단계 검출 방법을 위한 이미지 합성기반 학습 데이터 증강에 관한 연구 (A Study on Synthesizing Training Data for One-stage Object Detector)

  • 이선경;정치윤;문경덕;김채규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.446-450
    • /
    • 2020
  • 딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.

대용량 소셜 데이터의 의미 분석을 위한 MapReduce 기반의 분석 모듈 설계 및 구현 (Design and Implementation of an Analysis module based on MapReduce for Large-scalable Social Data)

  • 이혁주;김명진;이한구;윤효근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(B)
    • /
    • pp.357-360
    • /
    • 2011
  • 최근 인터넷과 통신기술, 특히 모바일과 관련된 기술의 급속한 발전으로 소셜 커뮤니케이션 수단으로 대표되는 SNS(Social Networking Service)가 중요한 이슈로 부각되어지고 있다. SNS 서비스 제공시 중요하게 고려되어져야 할 사항은 정확하고 의미 있는 데이터를 통해서 사용자가 원하고 관심 있는 분야의 정보를 어떻게 제공할 것인가에 초점이 맞춰져 있어야 한다. 그러나 최근 폭발적으로 증가되어지고 있는 소셜 데이터 때문에 사용자는 의미 분석이 정확하게 이루어지지 않은 신뢰성이 결여된 소셜 커뮤니케이션 서비스를 제공받고 있다. 이러한 소셜데이터 분석의 문제점을 해결하기 위해서 본 논문에서는 소셜 네트워크 서비스에 필요한 데이터를 수집하고, 클라우드 컴퓨팅 환경에서 수집된 대용량 SNS 데이터의 의미를 분석 할 수 있는 MapReduce 기반의 분석 모듈의 구조를 제안하였다. 제안한 모듈은 의미 분석에 필요한 소셜 데이터를 수집하는 수집 기능과 수집된 소셜데이터의 의미 분석을 수행하는 분석 기능을 포함하고 있다. 수집 기능은 SNS에서 생성되는 텍스트 형태의 데이터를 수집하고 MapReduce를 통해서 데이터를 분석하기 쉽게 적절한 크기로 생성된 파일을 분할한다. 수집된 소셜 데이터의 의미 분석은 기존 TF-IDF 방식에 개선된 Weighted-MINMAX 적용한 알고리즘을 통해서 구현하였다. 개선된 알고리즘은 단어의 중요도를 평가하고, 중요도가 높은 단어로 구성된 의미정보 제공 서비스를 지원한다. 시스템의 성능 평가를 위해서 노드별 데이터 처리시간과 추출 키워드의 정확도를 측정하였다.

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

교량 모니터링 빅데이터를 이용한 광안대교의 교통량 의존 변위 추정 모델 (Traffic Volume Dependent Displacement Estimation Model for Gwangan Bridge Using Monitoring Big Data)

  • 박지현;신성우;김수용
    • 대한토목학회논문집
    • /
    • 제38권2호
    • /
    • pp.183-191
    • /
    • 2018
  • 본 연구에서는 차종별 교통량 데이터와 연직 변위 데이터의 상관관계를 바탕으로 광안대교의 차종별 교통량 데이터를 이용한 연직 변위 추정 모델을 개발하였다. 추정 모델의 개발 과정에서 구조화 회귀 분석에 기반한 모델링 방법과 주성분 분석법에 기반한 모델링 방법이 적용되었으며, 각각의 방법으로 개발된 모델의 변위 추정 성능을 비교 분석하였다. 개발된 모델을 이용하여 추정된 변위는 실측 변위와 유사한 것으로 분석되었으며, 이로부터 차종별 교통량 데이터를 광안대교의 교통량 의존 변위 추정에 적용 가능한 것을 알 수 있었다. 또한, 구조화 회귀 분석에 기반한 모델과 주성분 분석에 기반한 모델의 변위 추정 성능은 상호간에 큰 차이가 없다는 것을 알 수 있었다. 결론적으로 본 연구에서 개발한 차종별 교통량 데이터를 이용한 연직 변위 추정 모델은, 광안대교의 교통하중에 따른 거동 분석 등에 유효하게 활용될 수 있을 것으로 사료된다.