• Title/Summary/Keyword: 데이터 기반 모델링

Search Result 1,370, Processing Time 0.028 seconds

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking (인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구)

  • Chohee Kim;Hyewon Chang
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.255-272
    • /
    • 2024
  • This study aims to design mathematics-integrated classes that cultivate artificial intelligence (AI) thinking and to analyze students' AI thinking within these classes. To do this, four classes were designed through the integration of the AI4K12 Initiative's AI Big Ideas with the 2015 revised elementary mathematics curriculum. Implementation of three classes took place with 5th and 6th grade elementary school students. Leveraging the computational thinking taxonomy and the AI thinking components, a comprehensive framework for analyzing of AI thinking was established. Using this framework, analysis of students' AI thinking during these classes was conducted based on classroom discourse and supplementary worksheets. The results of the analysis were peer-reviewed by two researchers. The research findings affirm the potential of mathematics-integrated classes in nurturing students' AI thinking and underscore the viability of AI education for elementary school students. The classes, based on AI Big Ideas, facilitated elementary students' understanding of AI concepts and principles, enhanced their grasp of mathematical content elements, and reinforced mathematical process aspects. Furthermore, through activities that maintain structural consistency with previous problem-solving methods while applying them to new problems, the potential for the transfer of AI thinking was evidenced.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization (완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법)

  • Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.125-148
    • /
    • 2018
  • Recently, as the demand for big data analysis increases, cases of analyzing unstructured data and using the results are also increasing. Among the various types of unstructured data, text is used as a means of communicating information in almost all fields. In addition, many analysts are interested in the amount of data is very large and relatively easy to collect compared to other unstructured and structured data. Among the various text analysis applications, document classification which classifies documents into predetermined categories, topic modeling which extracts major topics from a large number of documents, sentimental analysis or opinion mining that identifies emotions or opinions contained in texts, and Text Summarization which summarize the main contents from one document or several documents have been actively studied. Especially, the text summarization technique is actively applied in the business through the news summary service, the privacy policy summary service, ect. In addition, much research has been done in academia in accordance with the extraction approach which provides the main elements of the document selectively and the abstraction approach which extracts the elements of the document and composes new sentences by combining them. However, the technique of evaluating the quality of automatically summarized documents has not made much progress compared to the technique of automatic text summarization. Most of existing studies dealing with the quality evaluation of summarization were carried out manual summarization of document, using them as reference documents, and measuring the similarity between the automatic summary and reference document. Specifically, automatic summarization is performed through various techniques from full text, and comparison with reference document, which is an ideal summary document, is performed for measuring the quality of automatic summarization. Reference documents are provided in two major ways, the most common way is manual summarization, in which a person creates an ideal summary by hand. Since this method requires human intervention in the process of preparing the summary, it takes a lot of time and cost to write the summary, and there is a limitation that the evaluation result may be different depending on the subject of the summarizer. Therefore, in order to overcome these limitations, attempts have been made to measure the quality of summary documents without human intervention. On the other hand, as a representative attempt to overcome these limitations, a method has been recently devised to reduce the size of the full text and to measure the similarity of the reduced full text and the automatic summary. In this method, the more frequent term in the full text appears in the summary, the better the quality of the summary. However, since summarization essentially means minimizing a lot of content while minimizing content omissions, it is unreasonable to say that a "good summary" based on only frequency always means a "good summary" in its essential meaning. In order to overcome the limitations of this previous study of summarization evaluation, this study proposes an automatic quality evaluation for text summarization method based on the essential meaning of summarization. Specifically, the concept of succinctness is defined as an element indicating how few duplicated contents among the sentences of the summary, and completeness is defined as an element that indicating how few of the contents are not included in the summary. In this paper, we propose a method for automatic quality evaluation of text summarization based on the concepts of succinctness and completeness. In order to evaluate the practical applicability of the proposed methodology, 29,671 sentences were extracted from TripAdvisor 's hotel reviews, summarized the reviews by each hotel and presented the results of the experiments conducted on evaluation of the quality of summaries in accordance to the proposed methodology. It also provides a way to integrate the completeness and succinctness in the trade-off relationship into the F-Score, and propose a method to perform the optimal summarization by changing the threshold of the sentence similarity.

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Exploring the Trend of Korean Creative Dance by Analyzing Research Topics : Application of Text Mining (연구주제 분석을 통한 한국창작무용 경향 탐색 : 텍스트 마이닝의 적용)

  • Yoo, Ji-Young;Kim, Woo-Kyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • The study is based on the assumption that the trend of phenomena and trends in research are contextually consistent. Therefore the purpose of this study is to explore the trend of dance through the subject analysis of the Korean creative dance study by utilizing text mining. Thus, 1,291 words were analyzed in the 616 journal title, which were established on the paper search website. The collection, refining and analysis of the data were all R 3.6.0 SW. According to the study, keywords representing the times were frequently used before the 2000s, but Korean creative dance research types were also found in terms of education and physical training. Second, the frequency of keywords related to the dance troupe's performance was high after the 2000s, but it was confirmed that Choi Seung-hee was still in an important position in the study of Korean creative dance. Third, an analysis of the overall research subjects of the Korean creative dance study showed that the research on 'Art of Choi Seung-hee in the modern era' was the highest proportion. Fourth, the Hot Topics, which are rising as of 2000, appeared as 'the performance activities of the National Dance Company' and 'the choreography expression and utilization of traditional dance'. However, since the recent trend of the National Dance Company's performance is advocating 'modernization based on tradition', it has been confirmed that the trend of Korean creative dance since the 2000s has been focused on the use of traditional dance motifs. Fifth, the Cold Topic, which has been falling as of 2000, has been shown to be a study of 'dancing expressions by age'. It was judged that interest in research also decreased due to the tendency to mix various dance styles after the establishment of the genre of Korean creative dance.

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.