군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법으로, 사람이 일일이 살펴보기 어려운 데이터를 분석해서 비슷한 성향을 가진 데이터들끼리 모은 여러 개의 군집들을 만들어 낸다. 온라인 문서 군집화는 검색 엔진을 통해 검색된 문서들을 대상으로 군집화를 실행하여 유사한 특성의 문서들을 묶어서 보여줌으로써 사용자의 검색 환경의 편의성을 증진시키는 것이 목적이다. 문서군집화는 사람의 개입이 없이 자동으로 이루어져야 하고, 군집화 결과에 영향을 미치는 군집의 개수 선정도 자동으로 이루어져야 한다. 또한, 온라인 시스템에서는 빠른 응답 시간을 보장하는 것이 중요하다. 본 논문에서는 기하학적인 정보를 이용하여 군집의 수를 결정하는 방법을 제안한다. 제안하는 방법은 군집의 중심을 저차원 평면에 사상하는 것과 사상된 군집 중심의 거리 정보를 이용하여 군집들을 병합하는 두 단계로 이루어져 있다. 제안하는 방법을 실데이터에 적용하여 실험한 결과 군집화 성능이 향상되고, 처리 시간도 온라인 환경에 적합한 것을 확인 할 수 있었다.
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.947-957
/
2016
KCI는 국내 학술지 및 게재 논문과 인용에 대한 데이터베이스이며, 이를 이용하여 국내 학술지 간의 인용 관계를 파악할 수 있다. 현재 사용 중인 KCI의 학술지 분류는 각 학술지의 등재 신청 시 학술지 발간 주체가 선정한 분류로 인용 관계에 의한 분류가 아니다. 이로 인해 같은 분류에 속하는 학술지 사이의 인용관계가 없거나 낮은 현상이 발생하기도 하여 인용관계가 많은 학술지끼리 같이 묶여야 한다는 기준에 부합하지 않는 문제점이 발생하고 있다. 따라서 학술지 분류가 학술지 간의 인용정도를 잘 대표하지 못하는 것으로 알려져 있다. 본 연구에서는 KCI에 등재된 학술지 분류와 KCI 인용망에 네트워크 군집화 알고리즘을 적용한 군집 결과를 토대로 어떠한 차이가 있는지 살펴보았다. 이를 위해 최근 논문에서 대표적으로 다뤄지는 네트워크 알고리즘을 제시하고, 인용관계에 따른 각 알고리즘의 군집 결과 차이를 비교하였다. 그 결과 '인포맵' 알고리즘이 기존 KCI 분류망과 모듈화 구조 측면에서 유사성이 가장 높은 것으로 나타났다.
통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.
데이터의 양이 증가하면서 단일 노드 데이터베이스로는 저장과 처리를 동시에 수행하기에는 부족하다. 따라서, 데이터를 분산시켜 복수 노드로 구성된 분산 데이터베이스에 저장되고 있으며 분석 역시 효율성을 위해 병렬 기능을 제공해야한다. 전통적인 분석 방식은 데이터베이스에서 분석 노드로 데이터를 이동시킨 후 분석을 수행하기 때문에 네트워크의 비용이 발생하며 사용자가 분석을 위해 분석 프레임 워크도 다를 수 있어야한다. 본 연구는 군집화 분석 기법인 K-Means 군집화 알고리즘을 관계형 데이터 베이스와 칼럼 기반 데이터베이스를 이용한 분산 데이터베이스 환경에서 SQL로 구현하는 In-database 분석 함수로의 설계와 구현 그리고 관계형 데이터베이스에서의 성능 최적화 방법을 제안한다.
연구자들에게 지식을 습득하여 연구 활동에 도입하는데 걸리는 소요시간을 단축하는 것은 연구생산성 향상에 필수적인 요소라고 할 수 있다. 본 연구의 목적은 한민족과학기술자네트워크(KOSEN) 사용자들의 정보 이용 패턴을 군집화하고 그룹화 된 사용자들에게 맞는 개인화 추천서비스 알고리즘의 최적화 방안을 제안하는 것이다. 사용자들의 연구활동과 이용정보에 기반하여 적합한 서비스와 콘텐츠를 식별한 후 Spark 기반의 빅데이터 분석 기술을 적용하여 개인화 추천 알고리즘을 도출하였다. 개인화 추천 알고리즘은 사용자의 정보검색에 소요되는 시간을 절약하고 적합한 정보를 찾아내는데 도움을 줄 수 있다.
추천 서비스는 사용자에게 적합한 서비스를 선응적으로 제공하는 기술로써, 전자상거래 환경을 중심으로 널리 이용되고 있다. 그러나, 유비쿼터스 환경에서도 가장 활발한 기술 접목이 이루어지는 홈 네트워크 환경 내에 추천 서비스가 적용된 사례는 많지 않다. 본 논문에서는 홈 네트워크 환경에서 누적된 사용자와 기기 간 상호작용 정보들을 바탕으로 사용자 위치 기반의 개인화된 서비스를 추천하는 알고리즘을 제안한다. 본 알고리즘에서는 밀도기반 초기값 선정 기법을 적용한 군집화를 통해 필요한 데이터만을 추출함으로써 서비스 추천의 효율성 및 정확성을 높인다. 또한, 사용자 기반의 협업 필터링을 이용하여 데이터가 충분히 많지 않은 상황에서도 정확한 서비스 추천을 수행한다.
개체들 사이의 관계를 저차원 공간에 매핑하는 다차원척도법을 수행하기 위한 다양한 방법과 알고리즘이 개발되어왔다. 그러나 PROXSCAL이나 ALSCAL과 같은 기존의 기법들은 50개 이상의 개체를 포함하는 데이터 집합을 대상으로 개체 간의 관계와 군집 구조를 시각화하는데 있어서 효과적이지 못한 것으로 나타났다. 이 연구에서 제안하는 군집 지향 척도법 CLUSCAL(CLUster-oriented SCALing)은 기존 방법과 달리 입력되는 데이터의 군집 구조를 고려하도록 고안되었다. 50명의 저자동시인용 데이터와 85개 단어의 동시출현 데이터에 대해서 적용해본 결과 제안한 CLUSCAL 기법은 군집 구조를 잘 식별할 수 있는 MDS 지도를 생성하는 유용한 기법임이 확인되었다.
클러스터링은 무질서한 데이터들의 상호 연관 관계를 정의하고, 이를 통하여 보다 체계적으로 데이터를 군집화하는 것이다. 클러스터링을 적용한 웹 서비스 시스템은 비슷한 내용을 묶어 제공하기 때문에 사용자는 보다 효율적으로 정보를 제공받을 수 있다. 시멘틱 웹의 기반이 되는 온톨로지는 클러스터링을 위한 완벽한 입력 데이터를 제공한다. 본 논문은 온톨로지를 기반의 메타 데이터를 클러스터링 하기 위한 기법을 제안한다. 본 논문의 목적은 온톨로지 기반의 메타 데이터들의 유사성을 측정하기 위한 평가함수를 정의하고, 이러한 평가함수를 적용한 계층적 클러스터링 알고리즘을 연구하는 것이다.
문서-용어 빈도행렬은 텍스트 마이닝 분야에서 보편적으로 사용되는 데이터의 한 유형으로, 여러 개체들이 제공하는 문서를 기반으로 만들어진다. 그러나 대다수의 연구자들은 개체 정보에 무게를 두지 않고 여러 문서에서 공통적으로 등장하는 공통용어 중 핵심적인 용어를 효과적으로 찾아내는 방법에 집중하는 경향을 보인다. 공통용어에서 핵심어를 선별할 경우 특정 문서에서만 등장하는 중요한 용어들이 공통용어 선정단계에서부터 배제될 뿐만 아니라 개별 문서들이 갖는 고유한 정보가 누락되는 등의 문제가 야기된다. 본 연구에서는 이러한 문제를 극복할 수 있는 데이터를 근접성 데이터라 정의한다. 그리고 근접성 데이터를 생성할 수 있는 12가지 방법 중 개체 군집화의 관점에서 가장 최적화된 방법을 제안한다. 개체 특성 파악을 위한 군집화 알고리즘으로는 다차원척도법과 K-평균 군집분석을 활용한다.
대용량 고차원의 생물학 데이터가 매우 빠른 속도로 생산되는 현재, 단순히 고전적인 알고리즘들로는 풀 수 없는 문제들을 맞이하게 되었다. 이러한 문제들의 경우 시스템 생물학의 관점으로 다양한 생물 데이터의 융합을 통하여 접근할 경우 효율적으로 Computational Infeasibility(계산 불가능)를 해결함은 물론 그 해석 및 새로운 정보 획득에 매우 유리하다. 인간 DNA의 고차원 SNP 정보들의 군집화 및 질병 발현 패턴 분석은 그 조합의 수가 입력 데이터의 차원수에 따라 지수적(Exponentially)으로 증가하지만 PPI(단백질 상호작용) 네트워크 정보에 결합하여 필요한 중요부위를 선택적으로 이용할 경우 효율적으로 필요 SNP들의 선택 및 이로 인한 공간 축소가 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.