1 |
Clauset, A., Newman, M. and Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.
DOI
|
2 |
Copic, J., Jackson, M. O. and Kirman, A. (2009). Identifying community structures from network data via maximum likelihood methods, The BE Journal of Theoretical Economics, 9.
|
3 |
Danon, L., Diaz-Guilera, A. and Arenas, A. (2006). The effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2006, P11010.
DOI
|
4 |
Donath, W. E. and Hoffman, A. J. (1973). Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17, 420-425.
DOI
|
5 |
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27, 861-874.
DOI
|
6 |
Flake, G. W., Lawrence, S. and Giles, C. L. (2000). Efficient identification of web communities. In Proceedings of the sxth ACM SIGKDD international conference on knowledge discovery and data mining, 150-160, ACM.
|
7 |
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 74-174.
|
8 |
Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104, 36-41.
DOI
|
9 |
Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49, 291-307.
DOI
|
10 |
Kim, H. (2008). Citation flow of the ASIST proceedings using pathfinder network analysis. Journal of the Korean Society for Information Management, 25, 157-166.
DOI
|
11 |
Kim, J. K., Kim, S. H. and Oh, C. H. (2015). Comparison of journal clustering methods based on citation structure. Journal of the Korean Data & Information Science Society, 26, 827-839.
DOI
|
12 |
Lancichinetti, A. and Fortunato, S. (2009b). Community detection algorithms: A comparative analysis. Physical Review E, 80, 056117.
DOI
|
13 |
Leydesdorff, L. (2004). Clusters and maps of science journals based on bi-connected graphs in the Journal Citation Reports. Journal of Documentation, 60, 371-427.
DOI
|
14 |
Malliaros, F. D. and Vazirgiannis, M. (2013). Clustering and community detection in directed networks: A survey. Physics Reports, 533, 95-142.
DOI
|
15 |
Narin, F., Carpenter, M. and Berlt, N. (1972). Interrelationships of scientific journals. Journal of the American Society for Information Science, 23, 323-331.
DOI
|
16 |
Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.
DOI
|
17 |
Newman, M. E. (2004). Detecting community structure in networks. The European Physical Journal BCondensed Matter and Complex Systems, 38, 321-330.
DOI
|
18 |
Newman, M. E. and Leicht, E. A. (2007). Mixture models and exploratory analysis in networks. Proceedings of the National Academy of Sciences, 104, 9564-9569.
DOI
|
19 |
O'Malley, A. J. and Marsden, P. V. (2008). The analysis of social networks. Health Services and Outcomes Research Methodology, 8, 222-269.
DOI
|
20 |
Orman, G. K., Labatut, V. and Cherifi, H. (2011). On accuracy of community structure discovery algorithms, arXiv preprint arXiv:1112.4134.
DOI
|
21 |
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101, 2658-2663.
DOI
|
22 |
Rosvall, M. and Bergstrom, C. T. (2008). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences, 104, 7327-7331.
|
23 |
Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1, 27-64.
DOI
|
24 |
Scott, J. (2012). Social network analysis, Sage.
|
25 |
Soffer, S. N. and Vazquez, A. (2005). Network clustering coefficient without degree-correlation biases. Physical Review E, 71, 057101.
DOI
|
26 |
Suaris, P. R. and Kedem, G. (1988). An algorithm for quadrisection and its application to standard cell placement. IEEE Transactions on Circuits and Systems, 35, 294-303.
DOI
|
27 |
Tang, L. and Liu, H. (2010). Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery, 2, 1-137.
|
28 |
Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications. Cambridge university press, 8.
|
29 |
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440-442.
DOI
|
30 |
Won, D., and Choi, K. (2014). Network analysis and comparing citation index of statistics journals. Journal of the Korean Data & Information Science Society, 25, 317-325.
DOI
|
31 |
Zhang, L., Liu, X., Janssens, F., Liang, L. and Glanzel, W. (2010). Subject clustering analysis based on ISI category classification. Journal of Informetrics, 4, 185-193.
DOI
|
32 |
Arenas, A., Duch, J., Fernandez, A. and Gomez, S. (2007). Size reduction of complex networks preserving modularity. New Journal of Physics, 9, 176.
DOI
|
33 |
Barnes, E. R. (1982). An algorithm for partitioning the nodes of a graph. SIAM Journal on Algebraic Discrete Methods, 3, 541-550.
DOI
|
34 |
Blondel, V. D., Guillaume, J. L., Lambiotte, R. and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.
DOI
|
35 |
Carpenter, M. P. and Narin, F. (1973). Clustering of scientific journals. Journal of the American Society for Information Science, 24, 425-436.
DOI
|
36 |
Chun, H., and Leem, B. (2014). Face/non-face channel fit comparison of life insurance company and non-life insurance company using social network analysis. Journal of the Korean Data & Information Science Society, 25, 1207-1219.
DOI
|