• 제목/요약/키워드: 데이터 군집화 알고리즘

검색결과 206건 처리시간 0.022초

클라우드 환경에서 제우스 Botnet 공격 유형 분석을 위한 클러스터링 방안 연구 (A Study on the Clustering method for Analysis of Zeus Botnet Attack Types in the Cloud Environment)

  • 배원일;최석준;김성진;김형천;곽진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.11-20
    • /
    • 2017
  • 최근 클라우드 컴퓨팅 기술의 발전으로 인해 다양한 분야에서 클라우드 컴퓨팅 기술이 활용되고 있다. 클라우드 서비스의 수요가 증가하는 반면에 클라우드 환경에서의 보안 위협은 증가하고 있으며 특히, 악성코드에 의한 공격을 통해 클라우드 환경 내 상호 연결되어 있는 호스트들이 감염 전파될 경우 다른 호스트의 리소스에도 영향을 끼쳐 개인정보 및 데이터의 삭제 등의 보안위협이 확산될 수 있다. 따라서 이러한 보안 위협에 대응하기 위한 악성코드 분석 연구가 활발히 진행되고 있다. 이에 따라, 본 논문은 클라우드 환경에서 발생하는 악성코드 분석을 위해 k-means 클러스터링 알고리즘을 이용한 제우스 봇넷의 공격 유형별 군집화 방안을 제안한다. 이는 클라우드 환경 내 발생되는 제우스 봇넷에 대하여 악성행위를 유형별로 군집화 함으로써 악성 유무를 판별할 수 있으며, 추후 클라우드 환경에서 발생할 수 있는 새로운 유형의 제우스 봇넷 공격 대응을 목표로 한다.

표면분할을 이용한 시차공간상에서의 모델 기반 평면검출 (Model-Based Plane Detection in Disparity Space Using Surface Partitioning)

  • 하홍준;이창훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.465-472
    • /
    • 2015
  • 본 논문에서는 시차공간상의 평면검출 방법을 제안하고 그 성능을 평가한다. 다양한 표면을 평면으로 근사하고 검출함으로써 시차공간에 나타난 장면을 간소화하고 수식화하여 다루기 쉽도록 한다. 또한 시차공간에서 근사적으로 구한 평면은 3차원 공간상에서 실측 크기로 표현 가능하고 장애물 검출 및 카메라 위치 추정에 활용할 수 있다. 먼저 스테레오 매칭 기술을 이용해 두 개의 영상으로부터 2차원 공간상에 좌표쌍마다 시차값을 가지는 시차공간을 생성한다. x 또는 y축의 전체적인 추이를 반영하도록 돕는 선 단순화 기법을 이용하여 시차값의 접선 기울기를 추정한다. 기울기 쌍의 조합에 따라 10개의 라벨을 시차공간의 좌표쌍에 부여한다. 상하좌우 방향으로 인접하고 동일한 라벨을 가지는 좌표쌍을 연결하여 군집을 생성하고 최소자승법을 이용해 각 군집에 대한 평면식을 추정한다. 시차공간 내에서 평면식을 만족하는 점들이 가장 많은 평면을 검출하고 이를 시차공간을 가장 잘 간소화한 N개의 평면으로 선택한다. 평면검출의 성능을 정량적으로 평가하였고 그 결과는 3차원 원뿔과 원통에서 각각 97.9%, 86.6% 품질을 보였다. 스테레오 비전 알고리즘의 성능을 평가하기 위해 대표적으로 이용되는 Middlebury와 KITTI 실험데이터로부터 제안된 평면검출 방법은 훌륭하게 평면을 검출하였다.

블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법 (Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation)

  • 김근준;조호상;강봉순
    • 한국정보통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2016
  • 본 논문에서는 블러와 조명 변화에 강인한 바코드 디코딩 방법을 제안한다. 제안하는 디코딩 방법은 블러에 강인 디코딩과 빠른 연산속도를 위해 블러 영역과 비블러영역을 나누어 임계값을 연산하는 부분 지역 임계값 이진화 방법을 사용하였다. 또한 노이즈 데이터에 의한 인식 실패를 막기 위해서 동일한 엘리먼트 개수를 가지는 라인의 픽셀 너비를 모두 합한 면적 데이터를 이용하여 군집분류를 수행하는 k-means 알고리즘 기반의 디코더를 구현하였다. 다양한 악조건 환경에서 촬영된 샘플을 이용하여 실험 결과, 평균 98.47%로 높은 성공률을 보였으며 3개의 비교 프로그램 보다 성공률이 높았다.

LiDAR 센서를 활용한 배회 동선 검출 알고리즘 개발 (An Algorithm of Identifying Roaming Pedestrians' Trajectories using LiDAR Sensor)

  • 정은비;유소영
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.1-15
    • /
    • 2017
  • 최근 국제적인 테러 위협이 불특정 다수를 대상으로 발생하고 있으며, 이러한 위협에서 시민을 보호하기 위한 다양한 대책이 논의 중이다. 저렴해진 센서 기술을 활용한 사전 감시 시스템에 대한 요구가 높아지고 있으나, 보행 궤적의 고유 특성 검출 및 상세 분석 연구가 미비한 실정이다. 본 연구에서는 상용화된 보행 동선 솔루션을 활용하여, 삼성역 개찰구에서 코엑스와 직접 연결되는 연결 통로 (3-6번 출구 근처) 일대의 보행 동선 궤적 조사를 수행하였다. 조사된 궤적 자료를 바탕으로, 궤적 자료의 정규화 기법, Clustering 방법을 중심으로 보행 궤적을 유형화하고 배회 동선을 추출하는 분석 방법론을 제시하였다. 분석 결과, 동일 군집내에서 유사성이 크게 떨어지는 보행 궤적의 검출 가능성을 검증하였다.

지적 구조 분석을 위한 MDS 지도 작성 방식의 비교 분석 (A Comparison Analysis of Various Approaches to Multidimensional Scaling in Mapping a Knowledge Domain's Intellectual Structure)

  • 이재윤
    • 한국문헌정보학회지
    • /
    • 제41권2호
    • /
    • pp.335-357
    • /
    • 2007
  • 다차원척도법(MDS)은 지적 구조의 시각화를 위해서 오랫동안 사용되어 왔다. 그러나 MDS는 지적 구조를 시각적으로 표현하는데 있어서 세부 구조의 표현력이 취약하다는 약점을 가지고 있다. 이 연구에서는 상관계수 행렬의 가공 방식과 MDS 알고리즘을 조합한 여섯 가지 MDS 지도 작성 방식을 파악한 다음, 실제 지적 구조 데이터에 적용하여 비교해보았다. 실험 결과에서 가장 나쁜 방식으로 파악된 것은 가장 널리 사용되고 있는 방식으로서, 상관계수행렬로부터 유클리드 거리를 산출한 후 ALSCAL 알고리즘으로 MDS 지도를 작성하는 방식인 것으로 나타났다. 반면에 가장 좋은 방식은 상관계수를 z점수로 표준화하여 유클리드 거리를 산출한 후 PROXSCAL 알고리즘를 사용하는 방식이었다. 결론적으로 MDS 처리 과정을 주의깊게 구성한다면 더 구체적이고 명확한 지적 구조를 파악할 수 있음이 확인되었다.

u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측 (Short-term Power Load Forecasting using Time Pattern for u-City Application)

  • 박성승;손호선;이동규;지은미;김희석;류근호
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.177-181
    • /
    • 2009
  • u-City 활용을 위한 u-공공시설의 개발은 첨단 건축기술과 유비쿼터스 컴퓨팅의 통합으로 새로운 형식의 공간계획과 공공시설물을 내외부에 설치하기 위해 건물의 기반 서비스 시설인 냉난방, 공조, 조명 그리고 전력 관련 시설들의 기반이 구축되어야 한다. 따라서 이 논문에서는 이러한 기반 서비스를 위한 가장 기본적인 것 중 하나인 단기 전력 시스템의 수요와 공급 문제를 해결하기 위하여 시계열 분석을 적용한 시간 패턴 분석을 통해 전력 수요 예측 기술을 제안한다. 시간 패턴 분석을 위해 SOM 알고리즘과 k-means 기법을 적용하여 요일별, 시간별 데이터를 군집화하고 그 자료를 이용하여 시간 패턴 분석 방법인 지수평활기법과 ARIMA 모형을 비교 분석하였다. 제안 시스템 성능 평가 결과 지수평활기법 보다 ARIMA 모형을 적용한 시스템이 더 좋은 결과를 보였다. 따라서, 이러한 전력 부하 예측 결과를 이용하여 전력 공급의 수요에 따른 계획이나 시스템 운영을 효과적으로 할 수 있다.

  • PDF

비구조화 P2P 시스템에서 이동에이전트를 이용한 Peer의 속성기반 계층적 클러스터링 (Property-based Hierarchical Clustering of Peers using Mobile Agent for Unstructured P2P Systems)

  • 마이클 안젤로 살보;마테오 로미오;이재완
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.189-198
    • /
    • 2009
  • 비구조화 P2P 시스템은 오늘날 인터넷에서 가장 널리 사용되지만, 파일의 배치는 임의로 이루어지며, Peer와 컨텐츠간에는 어떤 상관관계도 존재하지 않는다. 또한 보낸 모든 질의가 원하는 데이터를 찾았는지에 대한 보장도 없다. 본 논문에서는 비구조화된 P2P시스템에서 군집형 계층 클러스터링을 사용하여 노드들을 클러스터화함으로써 검색을 향상시키는 방법을 제시한다. 제안한 기법과 k-means를 사용한 기법간에 노드 클러스터링을 위한 지연시간을 비교하였다. 또한 제안한 알고리즘, k-means 클러스터링, 클러스터링을 사용하지 않은 방법간에 한 네트워크 토폴로지에서 데이터를 찾기 위한 지연시간에 대해 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 기법의 지연시간이 다른 방법들보다 짧았음을 알 수 있었다.

  • PDF

프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발 (Toward understanding learning patterns in an open online learning platform using process mining)

  • 김태영;김효민;조민수
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.285-301
    • /
    • 2023
  • 비대면 교육의 중요성 및 필요에 따른 수요가 증가함에 따라 국내외 온라인 교육 오픈 플랫폼이 활성화되고 있다. 본 플랫폼은 대학 등 교육 전문기관과 달리 학습자의 자율성이 높은 특징을 가지며 이에 따라 개인화된 학습 도구를 지원하기 위한 학습 행동 데이터의 분석 연구가 중요시 되고 있다. 실제적인 학습 행동을 이해하고 패턴을 도출하기 위하여 프로세스 마이닝이 다수 활용되었지만 온라인 교육 플랫폼과 같이 자기 관리형(Self-regulated) 환경에서의 학습 로그를 기반한 사례는 부족하다. 또한, 대부분 프로세스 모델 도출 등의 모델 관점에서의 접근이며 분석 결과의 실제적인 적용을 위한 개별 패턴 및 인스턴스 관점에서의 방법 제시는 미흡하다. 본 연구에서는 온라인 교육 오픈 플랫폼 내 학습 패턴을 파악하기 위하여 프로세스 마이닝을 활용한 분석 방법을 제시한다. 학습 패턴을 다각도로 분석하기 위하여 모델, 패턴, 인스턴스 관점에서의 분석 방법을 제시하며, 프로세스 모델 발견, 적합도 검사, 군집화 기법, 예측 알고리즘 등 다양한 기법을 활용한다. 본 방법은 국내 오픈 교육 플랫폼 내 기계학습 관련 강좌의 학습 로그를 추출하여 분석하였다. 분석 결과 온라인 강의의 특성에 맞게 비구조화된 프로세스 모델을 도출할 수 있었으며 구체적으로 한 개의 표준 학습 패턴과 세 개의 이상 학습 패턴으로 세분화할 수 있었다. 또한, 인스턴스별 패턴 분류 예측 모델을 도출한 결과 전체 흐름 중 초기 30%의 흐름을 바탕으로 예측하였을 때 0.86의 분류 정확도를 보였다. 본 연구는 프로세스 마이닝을 활용하여 학습자의 패턴을 체계적으로 분석한다는 점에서 기여점을 가진다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.

수치지도와 도로명주소지도의 통합 활용을 위한 건물 매칭 분석과 신규 건물 갱신 (Building Matching Analysis and New Building Update for the Integrated Use of the Digital Map and the Road Name Address Map)

  • 염준호;허용;이재빈
    • 한국측량학회지
    • /
    • 제32권5호
    • /
    • pp.459-467
    • /
    • 2014
  • 최근 공공기관에서 다양한 공간 정보를 제작하고 보급함에 따라 정부기관 및 지자체 등의 구축된 공간정보를 융합하고 연계하는 일의 중요성이 점점 증대되고 있다. 현지 조사와 별도의 측량 작업 없이 필요한 공간정보를 융합을 통해 생성할 경우 시간과 노동 비용을 절감할 수 있을 뿐만 아니라 불필요한 예산의 이중 집행을 근본적으로 막을 수 있다. 그러나 새롭게 도입된 안전행정부의 도로명주소지도와 기존의 국가 기본도인 국토지리정보원의 수치지도2.0의 통합과 연계에 대한 연구는 매우 부족한 실정이다. 실제 공공기관의 공간정보 관련 업무에 도로명주소지도를 활용하도록 장려하고 있으나 대부분의 업무에는 국가 기본도인 수치지도가 활용되고 있다. 이에 본 연구에서는 수치지도2.0과 도로명주소지도의 통합과 연계를 위해 두 지도의 건물 레이어에 대한 매칭을 실시하고 신규 건물을 갱신하였다. 가구계 기반의 ICP(Iterative Closest Point) 기하보정을 통해 두 지도의 건물에 대한 기하학적 차이를 보정하고 계층적 군집화 기반의 다중 대응 객체 탐색 알고리즘을 적용하여 다대다 매칭을 수행하였다. 제안된 매칭기법의 정확도 평가 결과, 95% 이상의 높은 정확도를 보였으며 매칭 된 두 지도 데이터의 건물 레이어에 대한 통합적인 활용과 융합이 가능함을 확인하였다. 또한 최신성이 높고 갱신주기가 짧은 도로명주소지도를 이용하여 수치지도의 신규건물을 갱신함으로써 융합된 공간정보를 생성하고 비용 절감 효과를 거둘 수 있음을 확인하였다.