• 제목/요약/키워드: 데이터 군집화

검색결과 567건 처리시간 0.036초

데이터마이닝을 활용한 동적인 고객분석에 따른 고객관계관리 기법 (Customer Relationship Management Techniques Based on Dynamic Customer Analysis Utilizing Data Mining)

  • 하성호;이재신
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.23-47
    • /
    • 2003
  • 전통적인 고객관계관리 연구는 특정 시점에서 고객관계관리에 중점을 두어 연구되었다. 이러한 정적인 고객관계관리와 고객 행동에 관한 지식은 마케팅 관리자가 제한된 마케팅 자원을 이익의 극대화를 위해 사용할 수 있게 해주었다. 그러나 시간이 경과하게 되면 이러한 정적인 지식은 쓸모가 없어지게 된다. 그러므로 고객관계관리는 고객의 동적 특성을 반영해야 한다. 과거 고객의 구매 행위를 관찰하여 현재 또는 미래 시장의 고객을 세분화하며 구분된 고객 군집에 대해 서로 다른 마케팅 전략을 사용할 수 있다. 고객의 구매행동을 근간으로 한 고객관계관리는 수십 년 전부터 연구되어왔지만 동적인 고객관계관리에 대한 연구는 최근에 들어와서야 활발하게 진행되고 있다. 본 논문은 인터넷 상점의 고객 데이터로부터 추출된 지식과 시간 경과에 따른 고객 행동 패턴의 분석을 위해 데이터마이닝과 모니터링 에이전트 시스템(MAS)을 이용하며, 이를 통한 동적인 고객관계관리 모델을 제시한다. 이 모델은 고객이력경로에 대한 예측과 고객에게 나타나는 집단이력경로의 분석, 그리고 시간 경과에 따른 고객 군집의 변화에 대한 분석과 그에 따른 마케팅 전략 도출을 포함한다. 이 모델의 제안은 많은 온라인 소매상이 직면하고 있는 경영상의 문제를 해결하는데 유용할 것이다.

  • PDF

LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발 (Development of LiDAR-Based MRM Algorithm for LKS System)

  • 손원일;오태영;박기홍
    • 한국ITS학회 논문지
    • /
    • 제20권1호
    • /
    • pp.174-192
    • /
    • 2021
  • 카메라나 레이더에 비해 높은 인지 성능을 제공하는 라이다 센서는 높은 가격으로 의해 ADAS나 자율주행에 적용되기 어려웠으나, 최근 가격이 빠르게 낮아지고 있어 라이다를 활용한 기존 자율주행 기능 개선에 관한 기대가 높아지고 있다. 레벨3 자율주행자동차의 경우, 센서의 결함 또는 한계 등 인지시스템에 위험한 상황이 발생했을 때 운전자에게 수동모드로의 제어권 전환을 요청하며, 만약 이러한 요청에도 운전자가 반응하지 않을 경우 MRM 즉 최소위험기동을 구현하여야 한다. 본 연구에서는 이러한 배경을 바탕으로 인지 시스템에서 생기는 위험으로 인해 LKS의 정상작동이 힘든 경우에 대한, 라이다 기반의 MRM 알고리즘을 개발하였다. 본 논문의 LKS MRM 기술은 라이다에서 수집된 포인트 클라우드 데이터를 기반으로 객체 군집화를 통해 전방에 있는 차량의 이동 경로를 생성하고, 이를 자차량의 목표 경로점으로 변환하여, 카메라 기반의 LKS가 정상 작동을 할 수 없는 경우 라이다 기반의 경로 추종제어를 통해 최소위험기동을 수행한다. 제안된 알고리즘의 성능을 검증하기 위하여 HAZOP 기법을 사용하여 위험원을 식별하였고 이를 바탕으로 검증용 시나리오 3가지를 도출하여, 뵨 연구에서 구축한 시뮬레이션 환경에서 알고리즘 검증을 수행하였다. 그 결과 본 연구에서 제안한 라이다 기반 LKS MRM 알고리즘이 여러 가능한 인지시스템의 위험 상황에 대해 차선이탈을 방지하고 이를 통해 교통사고를 방지하는 것을 확인할 수 있었다.

패션 영역에서 디지털 전환 관련 연구동향 및 지식구조 (Research Trends and Knowledge Structure of Digital Transformation in Fashion)

  • 최영현;정진하;이규혜
    • 디지털융복합연구
    • /
    • 제19권3호
    • /
    • pp.319-329
    • /
    • 2021
  • 본 연구에서는 정보학적 접근을 통해 디지털 전환을 다룬 국내 패션 관련 연구동향과 지식구조를 밝히는 것을 목적으로 하였다. 국내 학술연구에서 나타난 관련 연구의 연도별, 학술지별 현황을 파악하고, 네트워크 분석을 통해 주요 연구 주제어를 도출하며, 시기별 주요 연구 동향과 지식 구조를 분석했다. 2010년부터 2020년까지 국내 학술 플랫폼에 게재된 159편의 연구를 수집했고, Python 3.7을 통해 데이터를 정제했으며, NodeXL 1.0.1을 통해 중심성 측정 및 네트워크 구현을 진행했다. 분석 결과 관련 연구는 2016년을 기점으로 활발하게 진행되었으며, 주로 의류학, 예술학 학술지에 밀집된 것으로 나타났다. 온라인 플랫폼, AR/VR이 가장 많이 언급되는 주제어로 나타났으며, 소비자 심리분석, 마케팅 전략 제시, 사례 분석이 주요 연구 방법으로 사용되고 있었다. 군집화를 통해 의류학의 세부 분과별 주요 연구 내용을 도출할 수 있었다. 시기별 주요 주제 분석 결과, 시간이 지남에 따라 소비자 중심의 연구에서 플랫폼이나 서비스에 대한 전략 제시 또는 디자인 개발 연구로 보다 다양하게 변화하고 있었다. 본 연구는 디지털 전환에 대한 패션 분야의 통찰력을 높이는데 기여하고, 관련 주제의 연구를 설계하는데 기초연구로 사용될 수 있을 것이다.

최적 교통분포를 고려한 해상교량의 안전 통항 폭에 관한 연구 (A Study on the Safety Navigational Width of Bridges Across Waterways Considering Optimal Traffic Distribution)

  • 손우주;문지하;구정민;조익순
    • 한국항해항만학회지
    • /
    • 제46권4호
    • /
    • pp.303-312
    • /
    • 2022
  • 해상교량은 선박의 통항 안전성 관점에서 가항수역을 줄이는 간섭요인으로 작용한다. 본 연구에서는 선박의 안전한 통항을 위해 최적 통항분포에 기반한 안전 통항폭을 분석하였다. 해상교량을 통항하는 선박의 안전 통항 폭에 대한 분석을 위해 AIS data에 기반한 선박교통분포를 조사하여 K-means clustering을 통해 선박을 크기에 따라 분류하였다. 군집화된 데이터에 대하여 최적분포 분석을 한 결과, 인천대교와 부산항대교에서는 대수정규분포, 목포대교와 마창대교에서는 정규분포가 최적분포에 가까운 것으로 분석되었다. 대수정규분포와 정규분포를 기준으로 선박 안전 통항 범위를 신뢰구간의 95%로 가정하여 분석한 결과, 인천대교의 경우 정규분포와 대수정규분포 간의 차이가 64~97m로 가장 큰 것으로 나타났으며, 최소 차이는 10m로 마창대교에서 나타났다. 이에 따라, 인천대교의 경우에는 정규분포보다 대수정규분포로 안전 통항 폭을 제시하는 것이 적합한 것으로 분석되었다. 타 교량의 경우에는 정규분포와 대수정규분포 간의 통항 폭 차이가 크지 않기 때문에 둘 중 어떤 분포를 사용해도 유사한 결과를 얻을 수 있는 것으로 분석되었다. 위 결과를 토대로, 해상교량의 안전통항 범위를 제시한다면 선박의 안전한 운항 및 사고 예방에 도움이 될 것이다.

환경소양 요인별 수준에 따른 환경행동 실천 경험의 차이 (Differences in Environmental Behavior Practice Experience according to the Level of Environmental Literacy Factors)

  • 김윤경;강지훈;이동영
    • 대한지구과학교육학회지
    • /
    • 제16권1호
    • /
    • pp.153-165
    • /
    • 2023
  • 본 연구는 학습자들의 환경 소양을 조사하여 환경 소양의 요인별로 그 결과를 분류한 후, 요인별 분류에 따른 학생들의 환경행동 실천 경험에 대해 어떤 차이가 있는지를 알아보기 위한 연구이다. 연구의 실행은 P 광역시에 위치한 D 초등학교 6학년 학생 47명의 학생들을 최종 분석의 대상으로 진행되었으며, 환경소양 검사지와 환경행동 실천 경험에 관한 설문지를 주요 데이터로 사용하였다. 연구의 결과 학습자들은 환경소양 요인에 따라 세 군집으로 분류되었으며, 각각 고 환경소양군, 저 환경소양군, 저기능정서군으로 명명하였다. 각 군집별로 환경행동 실천 경험에 대한 기술 내용을 활용하여 언어 네트워크를 형성하고, 중심도 분석을 실시하여 시각화한 후 분석하였다. 분석한 결과 고환경소양군은 1) 환경행동 실천 주체를 개인과 가족으로 인식하고, 2) 환경행동 실천 경험을 환경소양의 모든 요소와 연관지어서 기술하였으며, 3) 기후변화에 대해 비교적 비관론적 관점으로 인식하는 것을 확인하였다. 저 환경소양군과 저기능정서군은 1)환경행동 실천 주체를 비교적 사회적 문제로 인식하고, 2) 환경행동 실천 경험에 대한 기술이 비교적 편향되어 있으며, 특히 저기능정서군은 지식 요소에 집중되어 있다. 그리고 3) 기후변화에 대해서는 비교적 낙관론적인 관점으로 인식하고 있는 것을 확인하였다. 이 같은 결론을 바탕으로 환경교육의 관점에서 시사점을 주는 제언을 하였다.

머신러닝을 활용한 기상조건에 따른 공공도서관 도서대출 수요분석 (Analysis of public library book loan demand according to weather conditions using machine learning)

  • 오민기;김건욱;신세영;이진명;장원준
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.41-52
    • /
    • 2022
  • 국내 공공도서관은 1, 2차 도서관 발전 종합계획을 토대로 양적 성장을 이루었으나, 질적으로는 다소 부족한 점이 있어 이를 개선하기 위한 다양한 연구가 수행되었다. 대다수 선행연구에서는 사회·경제적 요인과 통계분석에 한정되어 수행된 한계점이 있다. 이에 본 연구에서는 시공간적 개념을 적용하여 강우와 폭염으로 인한 공공도서관 대출 수요 감소를 정량적으로 산출하고, 기상 변화로 도서 대출 수요 감소가 높은 지역과 그렇지 않은 지역을 군집화하여 공공도서관 내·외부 요인들과 결합한 후 기상변화에 따른 공공도서관 대출 수요 변화를 분석하였다. 분석 결과 공공도서관별 기상으로 인한 감소 차이가 존재하였으며, 공공도서관의 특성과 공간적 위치에 따라 일부 다르게 나타났다. 또한, 기온이 35℃ 이상인 폭염일 경우 도서 대출 수요 감소 폭이 많이 증가하였으며, 랜덤포레스트 모형으로 분석한 결과 유의미한 요인이 도출되었다. 내적 요인으로는 좌석 수, 장서 수, 면적이 도출되었으며, 외적 요인으로는 공공도서관 접근 경사로, 카페, 독서실, 10대 유동인구, 30/40대 여성 유동인구가 중요한 변수로 분석되었다. 이러한 분석 결과는 특정 시즌 기상을 고려한 공공도서관 이용 활성화 정책 수립에 이바지할 것으로 판단되며, 연구의 한계점도 제시하였다.

감염병 확산에 따른 레스토랑 선택속성 변화 분석: 텍스트마이닝 기법 적용 (Analysis of Changes in Restaurant Attributes According to the Spread of Infectious Diseases: Application of Text Mining Techniques)

  • 유준일;이은지;구철모
    • 경영정보학연구
    • /
    • 제25권4호
    • /
    • pp.89-112
    • /
    • 2023
  • 2020년 3월, 코로나바이러스 팬데믹으로 선포되면서, 다양한 방역 조치가 취해져 왔다. 이에 따라, 관광 및 환대 산업 내의 많은 변화들이 야기되었다. 특히 레스토랑 산업에서는 비대면 서비스 및 좌석 간 거리두기 등 방역 지침이 시행되었다. 전통적으로 레스토랑 선택속성에 대한 연구는 분위기, 서비스 품질, 음식의 품질을 포함한 3가지 속성의 중요성이 강조해 온 데 반해, 코로나19 이후 레스토랑 이용자를 대상으로 레스토랑 선택속성을 탐색한 연구는 미비한 실정이다. 이에 따라, 본 연구에서는 코로나19라는 환대 산업 내의 환경적 변화에 대한 이해에 기반하여, 국내 온라인 리뷰 데이터 상에서 새로운 레스토랑 경험적 속성을 확인하기 위한 탐색적인 접근을 시도하였다. 본 연구는 서울 을지로 지역에 위치한 일반음식점 및 휴게음식점 475개로 네이버 플레이스에 등록된 총 31,115개의 온라인 리뷰를 분석 단위로 고려하였다. 분석 방법은 단어 빈도와 역문서 빈도의 곱으로 산출된 TF-IDF와 잠재적 토픽들을 추출하는 확률적 모델 알고리즘인 LDA 토픽모델링 기법을 통해 온라인 리뷰 내에서 단어들의 군집화를 통해 레스토랑 선택속성을 재분류하고자 하였다. 분석 결과, 분위기, 서비스 품질, 음식 품질과 함께 코로나19 이후 레스토랑의 새로운 속성으로 "감염병 예방"요인이 도출되었다. 본 연구는 기존 레스토랑 선택속성에서 제시하는 세 가지 속성들을 범주화하고, 나아가 새로운 속성을 제시하였다는 점에서 기존 레스토랑 선택속성 문헌을 확장하여 학술적 의의가 있다. 나아가, 분석 결과에 기반하여 레스토랑 운영의 측면 및 정책적 관점에서의 실무적 제언을 시도하였다.

머신러닝을 이용한 오디오북 플랫폼 기반의 웹케어 모형 구축에 관한 연구 (A Study on Developing a Web Care Model for Audiobook Platforms Using Machine Learning)

  • 정다훈;이민혁;이태원
    • 경영정보학연구
    • /
    • 제26권1호
    • /
    • pp.337-353
    • /
    • 2024
  • 본 연구는 소비자 리뷰와 관리자 답변 간의 관계를 조사하여 소비자 리뷰를 효율적으로 관리하기 위한 웹케어의 필요성을 탐색하는데 목적이 있다. 효과적인 웹케어를 위한 방법론을 제안하고 오디오북 플랫폼 기반의 머신러닝을 이용한 웹케어 모형을 구축하고자 한다. 본 연구에서는 오디오북 플랫폼 4개를 선정하여 소비자 리뷰와 관리자 답변에 대한 데이터 수집 및 전처리 과정을 거쳐 토픽모델링, 주제불일치성, DBSCAN을 활용하고, 다양한 머신러닝 기법을 적용하여 분석을 시행하였다. 실험 결과 관리자 답변의 군집화 및 소비자 리뷰에 대한 답변 예측에서 유의미한 결과를 도출하였으며, 자원의 제한과 비용을 고려한 효율적인 방법론을 제안하였다. 본 연구는 머신러닝을 통해 웹케어 모형을 구축했다는 점에서 학술적인 시사점을 제공하며, 기업의 제한된 비용과 인력을 고려하여 웹케어 모형이라는 효율적인 방법론을 제시함으로써 실무적인 시사점을 지닌다. 본 연구에서 제안된 웹케어 모델은 개별화된 답변과 표준화된 관리자 답변을 제공하여 소비자 참여 및 유용한 정보 제공을 위한 전략적인 기초 자료로 활용될 수 있을 것이다.

시스템적인 군집 확인과 뉴스를 이용한 주가 예측 (Predicting stock movements based on financial news with systematic group identification)

  • 성노윤;남기환
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.1-17
    • /
    • 2019
  • 빅데이터 시대에 정보의 양이 급증하고, 그중 많은 부분을 차지하는 문자열 정보를 정량화하여 의미를 찾아 낼 수 있는 인공지능 방법론이 함께 발전하면서, 텍스트 마이닝을 통해 주가 예측에 적용해 온라인 뉴스로 주가를 예측하려는 시도가 다양해지고 있다. 이러한 주가 예측의 방법은 대개 예측하고자 하는 기업의 뉴스로 주가를 예측하는 방식이다. 하지만 특정 회사의 뉴스만이 그 회사의 주가에 영향을 주는 것이 아니라, 그 회사와 관련성이 높은 회사들의 뉴스 또한 주가에 영향을 줄 수 있다. 그러나 관련성이 높은 기업을 찾는 것은 시장 전반의 공통적인 영향과 무작위 신호 때문에 쉽지 않다. 따라서 기존 연구들은 주로 미리 정해진 국제 산업 분류 표준에 기반을 둬 관련성이 높은 기업을 찾았다. 하지만 최근 연구에 따르면, 국제 산업 분류 표준은 섹터에 따라 동질성이 다르며, 동질성이 낮은 섹터는 그들을 모두 함께 고려하여 주가를 예측하는 것이 성능에 악영향을 줄 수 있다는 한계점을 가진다. 이러한 한계점을 극복하기 위해, 본 논문에서는 주가 예측 연구에서 처음으로 경제물리학에서 주로 사용되는 무작위 행렬 이론을 사용하여 시장 전반 효과와 무작위 신호를 제거하고 군집 분석을 시행하여 관련성이 높은 회사를 찾는 방법을 제시하였다. 또한, 이를 기반으로 관련성이 높은 회사의 뉴스를 함께 고려하며 다중 커널 학습을 사용하는 인공지능 모형을 제시한다. 본 논문의 결과는 무작위 행렬 이론을 통해 시장 전반의 효과와 무작위 신호를 제거하여 정확한 상관 계수를 찾아 군집 분석을 시행한다면 기존 연구보다 더 좋은 성능을 보여 준다는 것을 보여준다.

빅데이터와 스몰데이터로 본 선형공원 - 시카고 606 트레일과 서울 경춘선 숲길을 중심으로 - (Using Big Data and Small Data to Understand Linear Parks - Focused on the 606 Trail, USA and Gyeongchun Line Forest, Korea -)

  • 심지수;오창송
    • 한국조경학회지
    • /
    • 제48권5호
    • /
    • pp.28-41
    • /
    • 2020
  • 이 연구는 경관 인식 모델의 세 가지 요소(활동, 물리적 환경, 이용자)를 기본으로 하는 스몰데이터인 설문조사와 빅데이터인 소셜미디어 분석을 통해 문화가 다른 두 지역(미국, 한국)의 선형 공원 두 곳을 분석하고자 한다. 소셜 미디어의 사용이 증가하고 경관을 보는 새로운 매체로 부상했음에도 불구하고, 현재 소셜 미디어를 활용한 공원 연구는 제한적이다. 이에 본 연구는 소셜 미디어 분석과 설문 조사를 동시에 활용해서 비교함으로써 설문 조사가 갖는 한계를 보완함과 동시에 소셜 미디어 분석의 제한점을 보완하고자 한다. 미국 시카고의 606 트레일와 한국 서울의 경춘선 숲길은 버려진 길에 조성된 공원이다. 이 두 곳을 대상으로 총 505부의 설문조사를 시행했고, 그 결과는 통계 분석, 주성분 분석, 회귀 분석을 활용해서 분석하였다. 또한 각 선형 공원을 언급한 트위터를 총 20,000건 이상 수집했다. 이 트위터를 대상으로 군집 분석, 바이그램 네트워크 분석 등을 통해 각 공원이 갖는 장소적 특성 및 물리적 환경을 분석했다. 연구 결과는 공원 디자인이 다양해질수록 행동은 단순화 된다는 것을 발견할 수 있었다. 공원 이용자들의 절반은 선형 공원을 최종 목적지까지 도달하는 지름길로 이용했고, 공원의 특징에 따라 다양한 활동과 혜택을 확인할 수 있었다. 소셜 미디어 분석 결과, 606트레일은 경춘선 숲길 보다 주민들과 더욱 밀접한 관계를 갖고 있다는 것을 확인했다. 또한 경춘선은 606트레일보다 공원 내 이벤트와 연관이 깊음을 발견할 수 있었다.