Because a sensor node in wireless sensor networks(WSNs) has limited resources, such as battery capacity and memory, data aggregation techniques have been studied to manage the limited resources efficiently. Because sensor network uses wireless communication, a data can be disclosed by attacker. Thus, the study on data protection schemes for data aggregation is essential in WSNs. But the existing data aggregation methods require both a large number of computation and communication, in case of network construction and data aggregation processing. To solve the problem, we propose a data protection scheme based on Hilbert-curve for data aggregation. Our scheme can minimizes communications among neighboring sensor nodes by using tree-based routing. Moreover, it can protect the data from attacker by doing encryption through a Hilbert-curve technique based on a private seed, Finally, we show that our scheme outperforms the existing methods in terms of message transmission and average sensor node lifetime.
Proceedings of the Korean Society for Information Management Conference
/
2017.08a
/
pp.104-104
/
2017
연구 데이터란 과학적 연구에서 사용된 일차 자료와 연구자에 의해 직접 작성된 연구의 결과로서 수치, 문자, 이미지, 음성 등의 사실적 기록을 의미한다. 이 연구의 주제 분야인 의학은 잠재적 가치와 활용 가능성이 높고 공익적 성격을 가지고 있는 학문 분야로 의학 연구 데이터의 종류와 관리의 필요성을 통해서 그 가치와 공유 의미를 찾아보고자 한다. 또한 연구 데이터의 대표적인 임상 시험 기록과 연구 논문의 발표와 공유 현황에 대해서도 살펴보고 그 안에서 도서관의 역할이 어떤 것인가를 짚어보고자 한다. 의학 연구 데이터는 환자 진료기록, 건강 검진 기록, 임상 기록, 사망 기록, 임상 시험 기록, 유전체 정보, 연구 논문 등 그 종류와 형태가 다양하며 대용량인 경우가 많다. 의학 연구는 개인 정보보호와 윤리적인 문제 등 연구 수행 과정에서 어려운 점이 많은 성격을 가지고 있으나 질병 치료나 예방 나아가 인류의 건강과 직접적으로 관련된 학문 분야로 의학 연구 데이터의 보존과 공개, 공유를 위한 관리는 큰 의미가 있다. 의학 연구 데이터관리는 새로운 연구의 밑받침이 될 뿐만 아니라 중 저개발 국가의 연구자들에게도 큰 기회를 부여하여 세계적인 의학 발전에 기여할 수 있다. 또한 임상 시험 결과에 대한 은폐와 거짓 연구 방지에도 의미가 있어 미국뿐만 아니라 전세계적으로 학술 연구 논문 발표에 사용된 데이터는 등록하도록 규정하고 있다. 임상 시험 등록으로 공인된 사이트는 NIH의 ClinicalTrials.gov, ICTRP의 Primary Registry 등이 있으며, 우리나라에도 질병관리본부 국립보건연구원에서 관리하는 CRIS 등이 있다. 의학 연구자들은 연구의 시작부터 연구 데이터를 수집, 사용, 보존, 공유의 문제를 고려해야 하나 시간적 물리적인 문제 등으로 어려움을 겪고 있으며, 이를 지원하는 서비스는 도서관에서도 관심이 높아지고 있는 분야로 Virginia Commonwealth 대학 도서관과 Emory 대학 도서관 등에서 시도되고 있다. 이 서비스는 연구 과정에서 사서의 지원이 가능한 새로운 기회로 연구자의 데이터관리를 위한 단계별 스토리를 조직하고 DMP 작성 지원 및 교육 등을 통해서 학술 커뮤니케이션에서 새로운 역할자로 자리잡을 수 있을 것이다.
Journal of the Korean Data and Information Science Society
/
v.28
no.3
/
pp.605-615
/
2017
Recently, financial supervisory authority of Korea and international credit rating agencies have been concerned about a stand-alone rating that is calculated without incorporating guaranteed support of parent companies. Guaranteed by parent companies, most foreign subsidiaries keeps good credit rate in spite of weak financial status. However, what if the parent companies stop supporting the foreign subsidiaries, they could have a probability to go bankrupt. In this paper, we have validated a credit rating model through statistical measurers such as performance, calibration, and stability for Korean companies owning foreign subsidiaries.
Recently, there have been many research efforts on privacy-preserving data mining. In privacy-preserving data mining, accuracy preservation of mining results is as important as privacy preservation. Random perturbation privacy-preserving data mining technique is known to well preserve privacy. However, it has a problem that it destroys distance orders among time-series. In this paper, we propose a notion of the noise averaging effect of piecewise aggregate approximation(PAA), which can be preserved the clustering accuracy as high as possible in time-series data clustering. Based on the noise averaging effect, we define the PAA distance in computing distance. And, we show that our PAA distance can alleviate the problem of destroying distance orders in random perturbing time series.
This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.
Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
The Journal of the Korea Contents Association
/
v.21
no.2
/
pp.121-129
/
2021
In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.
본 연구는 인지 유형에 따라 시계열 예측의 정확성이 분석적인 사람과 직관적인 사람 간에 다를 것이란 가설을 설정하고 이를 규명하기 위하여 44명의 대학생을 사용하여 실험이 이루어졌다. 피험자는 MBTI에 의거하여 분석적인 그룹과 직관적인 그룹으로 나누고 주어진 시계열 데이터에 대하여 예측을 하게 하였다. 이때 인지 유형에 따른 뇌파의 편측성을 분석하기 위하여 전두엽에서 뇌파(F3, F4)를 측정하였다. 그 결과, 인지유형간의 뇌파의 편측성에 유의적인 차이가 없었으며, 예측의 정확성 (MAPE) 또한 유의적인 차이가 없었다.
In this study, I took the evidence-explanation (E-E) continuum perspective to examine the epistemological implications of scientific reasoning cases designed by preservice elementary teachers during their simulation teaching. The participants were four preservice teachers who conducted simulation instruction on the seasons and high/low air pressure and wind. The selected discourse episodes, which included cases of inductive, deductive, or abductive reasoning, were analyzed for their epistemological implications-specifically, the role played by the reasoning cases in the E-E continuum. The two preservice teachers conducting seasons classes used hypothetical-deductive reasoning when they identified evidence by comparing student-group data and tested a hypothesis by comparing the evidence with the hypothetical statement. However, they did not adopt explicit reasoning for creating the hypothesis or constructing a model from the evidence. The two preservice teachers conducting air pressure and wind classes applied inductive reasoning to find evidence by summarizing the student-group data and adopted linear logic-structured deductive reasoning to construct the final explanation. In teaching similar topics, the preservice teachers showed similar epistemic processes in their scientific reasoning cases. However, the epistemological implications of the instruction were not similar in terms of the E-E continuum. In addition, except in one case, the teachers were neither good at abductive reasoning for creating a hypothesis or an explanatory model, nor good at using reasoning to construct a model from the evidence. The E-E continuum helps in examining the epistemological implications of scientific reasoning and can be an alternative way of transmitting scientific reasoning.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.1299-1302
/
2004
본 연구에서는 MANET(Mobile Ad Hoc Network)에서 분산 PKI(Public Key Infrastructure) 메커니즘을 라우팅 프로토콜에 적용하기 위한 방법을 제안한다. 이를 위해 MANET이 사용하는 라우팅 프로토콜로 CBRP(Cluster Based Routing Protocol)를 고려한다. 제안하는 프로토콜은 CBRP의 기능과 분산 PKI 메커니즘을 활용하여 효율적으로 인증서 체인을 찾을 수 있고, 이를 통해 통신노드 상호간의 세션키 설정과 송수신하고자 하는 데이터에 대한 암호화를 지원한다. 또한, 라우팅 프로토콜의 안전한 동작을 위해 제안하는 프로토콜은 전자서명된 HELLO 메시지를 교환하여 악의적인 공격자들에 대해 신뢰성을 제공하고, 안전한 라우팅을 가능하게 한다.
Currently, most context-aware services are built by developers. Some researchers argued that services should be defined by end users, who understand their own needs best. We view that the significance of enabling the user to define his/her personalized services will multiply as our living spaces grow smarter. This paper introduces a novel method called CASPER, which is capable of deriving personalized services from the log of user's activities of daily living. CASPER can generate useful services that even the user may not perceive, mining causality of events in the log. We present the algorithm of CASPER in detail and discuss the result of an experiment which we conducted as a proof of concept.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.