• Title/Summary/Keyword: 데이터과학과

Search Result 5,369, Processing Time 0.036 seconds

Risk Factors for Binge-eating and Food Addiction : Analysis with Propensity-Score Matching and Logistic Regression (폭식행동 및 음식중독의 위험요인 분석: 성향점수매칭과 로지스틱 회귀모델을 이용한 분석)

  • Jake Jeong;Whanhee Lee;Jung In Choi;Young Hye Cho;Kwangyeol Baek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.685-698
    • /
    • 2023
  • This study aimed to identify binge-eating behavior and food addiction in Korean population and to determine their associations with obesity, eating behaviors, mental health and cognitive characteristics. We collected clinical questionnaire scores related to eating problems (e.g. binge eating, food addiction, food cravings), mental health (e.g. depression), and cognitive functions (e.g. impulsivity, emotion regulation) in 257 Korean adults in the normal and the obese weight ranges. Binge-eating and food addiction were most frequent in obese women (binge-eating: 46.6%, food addiction: 29.3%) when we divided the participants into 4 groups depending on gender and obesity status. The independence test using the data with propensity score matching confirmed that binge-eating and food addiction were more prevalent in obese individuals. Finally, we constructed the logistic regression models using forward selection method to evaluate the influence of various clinical questionnaire scores on binge-eating and food addiction respectively. Binge-eating was significantly associated with the clinical scales of eating disorders, food craving, state anxiety, and emotion regulation (cognitive reappraisal) as well as food addiction. Food addiction demonstrated the significant effect of food craving, binge-eating, the interaction of obesity and age, and years of education. In conclusion, we found that binge-eating and food addiction are much more frequent in females and obese individuals. Both binge-eating and food addiction commonly involved eating problems (e.g. food craving), but there was difference in mental health and cognitive risk factors. Therefore, it is required to distinguish food addiction from binge-eating and investigate intrinsic and environmental risk factors for each pathology.

Analysis of the Impact of Generative AI based on Crunchbase: Before and After the Emergence of ChatGPT (Crunchbase를 바탕으로 한 Generative AI 영향 분석: ChatGPT 등장 전·후를 중심으로)

  • Nayun Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.53-68
    • /
    • 2024
  • Generative AI is receiving a lot of attention around the world, and ways to effectively utilize it in the business environment are being explored. In particular, since the public release of the ChatGPT service, which applies the GPT-3.5 model, a large language model developed by OpenAI, it has attracted more attention and has had a significant impact on the entire industry. This study focuses on the emergence of Generative AI, especially ChatGPT, which applies OpenAI's GPT-3.5 model, to investigate its impact on the startup industry and compare the changes that occurred before and after its emergence. This study aims to shed light on the actual application and impact of generative AI in the business environment by examining in detail how generative AI is being used in the startup industry and analyzing the impact of ChatGPT's emergence on the industry. To this end, we collected company information of generative AI-related startups that appeared before and after the ChatGPT announcement and analyzed changes in industry, business content, and investment information. Through keyword analysis, topic modeling, and network analysis, we identified trends in the startup industry and how the introduction of generative AI has revolutionized the startup industry. As a result of the study, we found that the number of startups related to Generative AI has increased since the emergence of ChatGPT, and in particular, the total and average amount of funding for Generative AI-related startups has increased significantly. We also found that various industries are attempting to apply Generative AI technology, and the development of services and products such as enterprise applications and SaaS using Generative AI has been actively promoted, influencing the emergence of new business models. The findings of this study confirm the impact of Generative AI on the startup industry and contribute to our understanding of how the emergence of this innovative new technology can change the business ecosystem.

  • PDF

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

The History of the Development of Meteorological Related Organizations with the 60th Anniversary of the Korean Meteorological Society - Universities, Korea Meteorological Administration, ROK Air Force Weather Group, and Korea Meteorological Industry Association - (60주년 (사)한국기상학회와 함께한 유관기관의 발전사 - 대학, 기상청, 공군기상단, 한국기상산업협회 -)

  • Jae-Cheol Nam;Myoung-Seok Suh;Eun-Jeong Lee;Jae-Don Hwang;Jun-Young Kwak;Seong-Hyen Ryu;Seung Jun Oh
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.275-295
    • /
    • 2023
  • In Korea, there are four institutions related to atmospheric science: the university's atmospheric science-related department, the Korea Meteorological Administration (KMA), the ROK Air Force Weather Group, and the Meteorological Industry Association. These four institutions have developed while maintaining a deep cooperative relationship with the Korea Meteorological Society (KMS) for the past 60 years. At the university, 6,986 bachelors, 1,595 masters, and 505 doctors, who are experts in meteorology and climate, have been accredited by 2022 at 7 universities related to atmospheric science. The KMA is carrying out national meteorological tasks to protect people's lives and property and foster the meteorological industry. The ROK Air Force Weather Group is in charge of military meteorological work, and is building an artificial intelligence and space weather support system through cooperation with universities, the KMA, and the KMS. Although the Meteorological Industry Association has a short history, its members, sales, and the number of employees are steadily increasing. The KMS greatly contributed to raising the national meteorological service to the level of advanced countries by supporting the development of universities, the KMA, the Air Force Meteorological Agency, and the Meteorological Industry Association.

Effects of Shoulder Muscle Strength on Terminal Range by Humeral Head Retroversion (상완골 후경각이 가동역에 따른 견관절 근력에 미치는 영향)

  • Park, Si-Young;Lee, Dong-Jun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.549-554
    • /
    • 2010
  • Increased external rotation and decreased internal rotation have been noted to occur progressively in the throwing shoulders of baseball pitchers. The purpose of this study was to provide descriptive data for terminal range eccentric antagonist/concentric agonist shoulder muscle strength in collegiate baseball pitchers with humeral head retroversion diagnosed through MRI. The dominant and non-dominant shoulders of 9 asymptomatic baseball pitchers were tested through a range of 20 degrees of external rotation to 90 degrees of internal rotation using the Biodex system 3 isokinetic dynamometer at speeds of $90^{\circ}/s$ and $180^{\circ}/s$. Differences between the dominant and non-dominant shoulders were assessed using the paired samples t-test. Total range of motion, measured at $90^{\circ}$ of glenohumeral abduction, was $180.1^{\circ}$ for dominant shoulders and $183.7^{\circ}$ for non-dominant shoulders. Humeral head retroversion measured $47.6{\pm}6.1^{\circ}$ in dominant and $37.8{\pm}5.3^{\circ}$ in non-dominant extremities. The mean internal rotator concentric contraction (IR-Con) showed a significant difference compared to $31.5{\pm}5.1$ (Nm) in dominant and $38.7{\pm}5.2$ (Nm) in non-dominant shoulders at $180^{\circ}/s$ (p<0.05). The mean external rotator eccentric contraction (ER-Ecc) showed a significant difference compared to $20.3{\pm}4.7$ (Nm) in dominant and $25.1{\pm}3.7$ (Nm) in non-dominant shoulders at $90^{\circ}/s$ (p<0.05). There is a pattern of increased external rotation and decreased internal rotation in the dominant extremity that significantly correlates with an increase in humeral retroversion.

Relationship between Low Back Pain and Lumbar Paraspinal Muscles Fat Change in MRI (편측 요통을 호소하는 환자에 있어서 척추 주위 근육의 지방량과 통증과의 관계)

  • Kim, Ha-Neul;Kim, Kyoung-Hun;Kim, Joo-Won;Jin, Eun-Seok;Ha, In-Hyuk;Koh, Dong-Hyun;Hong, Soon-Sung;Kwon, Hyeok-Joon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • Objectives : Low back pain(LBP) is a common disabling disease in clinical practice and loss of working hours due to this condition is huge. The aim of this study was to determine if there was an association between fat deposit of paraspinal muscles as observed on MRI scans in patients presenting with unilateral LBP. Methods : 24 patients who visiting our hospital with a clinical presentation of unilateral LBP were recruited to the study. Patients were between 20 and 30 years and had a history of unilateral LBP within 12 months. After MRI scaning, the images were saved in DICOM file format for Picture Archiving and Communication System(PACS). The percentage of fat infiltrated area was measured using a pseudocoloring technique. Data were analyzed comparing the fat deposits of the muscles on the symptomatic and asymptomatic sides. Paired t-test was used to find the difference between the measurements of fat tissue in individual patients. Results : The amount of fat in the symptomatic side was $7.6{\pm}4.51%$, asymptomatic side was $6.7{\pm}4.29%$. There were increases, statistically significant, in the fat changes of the paraspinal muscles at the L4-5 disc level(P <0.05). Also, men were likely than women to have more fat deposit in symptomatic side(men $8.5{\pm}5.1%$, women $6.5{\pm}3.6%$). Conclusions : The amount of fat in the symptomatic side shows significantly increased than asymptomatic side in the paraspinal muscles at the L4-5 disc level. It suggested that fat infiltration in the muscles associated with LBP. Further studies will be needed to confirm the relationship between the muscle fatty changes and LBP in the large sample size. In addition, the correlation of pain severity with fat infiltration needs to be addressed.

A Study on the Road Safety Analysis Model: Focused on National Highway Areas in Cheonbuk Province (도로 안전성 분석 모형에 관한 연구: 전라북도 국도 권역을 중심으로)

  • Lim, Joonbeom;Kim, Joon-Ki;Lee, Soobeom;Kim, Hyunjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.583-595
    • /
    • 2014
  • Currently, Korean transportation policies are aiming for increase of safety and environment-friendly and efficient operation, by avoiding construction and expansion of roads, and upgrading road alignments and facilities. This is revealed by that there have been 22 road expansion projects (30%) and 50 road improvement projects (70%) under the 3rd Five-Year Plan for National Highways ('11~'15), while there were 53 road expansion projects (71%) and 22 road improvement projects (29%) under the 2nd Five-Year Plan for National Highways. For more effective road improvement projects, there is a need of choosing projects after an objective and scientific safety assessment of each road, and assessing safety improvement depending on projects. This study is intended to develop a model for this road safety analysis and assessment. The major objective of this study is creating a road safety analysis and assessment model appropriate for Korean society, based on the HSM (Highway Safety Manual) of the U.S. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. The collected data was processed correlation analysis of each road element was implemented to see which factor had a big effect on traffic accidents. On the basis of these results, then, an accident model was established as a negative binomial regression model.Using the developed model, an Crash Modification Factor (CMF) which determines accident frequency changes depending on safety performance function (SPF) predicting the number of accident occurrence through traffic volume and road section expansion, road geometric structure and traffic properties, was extracted.

TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice (E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현)

  • Yoon, A-Ran;Kim, Do-Nyun;Seo, Min-Koo;Oh, Sang-Taek;Seo, Jung-Seon;Jun, Se-Mo;Cha, Jung-Ho;Lee, Seung-Deok;Lee, Suk-Kyeong
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • In this study, we established a radiodermatitis animal model and investigated the change in immune cell proportions in the secondary lymphoid organs. The cells responsible for the increased transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and interleukin-10 (IL-10) production in the lesions following irradiation were also investigated. The radiodermatitis model was constructed by locally exposing the posterior dorsal region of hairless-1 (HR-1) mice to 10 Gy electron (E)-ray/day for six consecutive days. The change in immune cell proportions was analyzed by FACS. Immunohistochemistry was carried out to detect the expression of cytokines and cell-specific markers in the skin. The proportions of antigen-presenting cells, T cells, and B cells in the lymph nodes and spleen were affected by E-irradiation. After irradiation, TGF-${\beta}1$ and IL-17 were co-localized in the papillary region of the dermis with keratin-14 (K-14)-positive cells rather than with regulatory T cells (Treg). IL-10 was not co-stained with Treg, T helper 17 (Th17) cells, dendritic cells, or macrophages. Our data indicate that TGF-${\beta}1$ is over-expressed mainly by proliferated keratinocytes in the lesions of a radiodermatitis animal model.