The addition and subtraction relationship and the multiplication and division relationship are explicitly dealt with in second and third grade mathematics textbooks. However, these relationships are not discussed anymore in the problem situations and activities in the 4th, 5th, and 6th grade mathematics textbooks. In this study, we investigate the calculation principles of subtraction and division in the elementary school mathematics textbooks. Based on our investigation, we justify the addition and subtraction relationship and the multiplication and division relationship at the level of children's understanding so that we discuss some problem situations and activities where the relationships can be applied to subtraction and division. In addition, we suggest educational implications that can be obtained from children's applying the relationships and the properties of equations to subtraction and division.
Journal of Elementary Mathematics Education in Korea
/
v.3
no.1
/
pp.21-39
/
1999
In this paper, we first exam the relation between Piaget's theory of cognitive development and cognitive constructivism. With it's outcome We find three principles of constructivist teaching-learning methods for primary mathematics These are as follows 1) active learning based on self-regulatory process 2) empirical learning by self initiated activities 3) individual learning derived from present cognitive structure and fits of new experiences. Finally we introduce several examples for classroom practice applied the above principles in primary mathematics.
The purpose of this study was to Investigate the preservice elementary teachers' pedagogical content knowledge of addition and subtraction. The subjects for data collection were 29 preservice elementary teachers and data were collected through open ended problems. The findings imply that the preservice elementary teachers show low level of understanding of addition and subtraction such as the word problem posing and the contexts of part-part-whole and compare. The research results indicate that the preservice elementary teachers possess primarily a procedural knowledge of pedagogical content knowledge and don't understand relationship with real-world situation. This study provide the information available on developing program for preservice elementary teachers.
Some children can construct a basic concept of addition and subtraction during the preschool years. Children start to experience mathematics via numbers and their of operations and contact with various contexts of addition and subtraction. In special, word problems reflect mathematics which is appliable to real life. In this paper, I analyse the types of word problems in text book and its students' responses. First, I analyse the types of addition word problems which consist of change add-into situations and part-part-whole situations. Second, I analyse the types of subtraction word problems which consist of change take-away situations, compare situations and equalize situations. Third, I analyse the students' responses by the types of word problems in addition and subtraction. And 115 2nd grade elementary school students participated in this survey. The following results have been drawn from this study. First, the proposition of word problems of part-part-whole situations is higher than that of change add-into situations and the proposition of word problems of take-away situations is higher than that of compare situations and equalize situations. According to the analysis about students' responses, It is no difference between change add-into situations and part-part-whole situations. But the proposition of word problems of take-away situations is higher than that of compare situations and equalize situations. This results from word problems which contain unnecessary information in problem. So, we have to present the various word problems to students.
This study analyzed the introduction of addition and subtraction, including the composition and decomposition of numbers in the Korean, Singaporean, American, and Japanese elementary mathematics textbooks. The analytic foci of this study included visual models and their connections with the given problem contexts, the introduction of addition/subtraction or addition/subtraction sentences and their connections with the visual models, and additional activities for students to develop a relational understanding of the equal sign. The results of the analysis demonstrated diverse connections, mainly because the problem contexts, visual models, and the introduction of addition/subtraction or addition/subtraction sentences were implemented differently for each textbook. There were differences among the textbooks in what order of problem contexts were presented. Regarding the use of visual models, two textbooks tended to use one model consistently, whereas the other textbooks used various models depending on the problem contexts. There were subtle but significant differences in introducing addition/subtraction or addition/subtraction sentences. For a relational understanding of the equal sign, all textbooks included activities emphasizing that both sides of the equal sign are equal. Based on the results of this study, this paper closes with several implications related to the problem contexts to introduce addition/subtraction and addition/subtraction sentences as well as the use of visual models, which can serve as a basis for a new unit for the subsequent textbook.
This study examines relations between the 5th graders' fraction operation skills and error types on constructed-response items. As results, first, the participants have lower fraction operation skills on 'multiplication of fraction' than 'addition and subtraction of fraction'. Second, the participants have different error types depend on their constructed-response items. Most of error types which group with high ability made was 'leap of solving process', both groups error type with medium ability as well as low ability is 'misunderstanding of questions'. Third, the operation skills on 'addition and subtraction of fraction' have an influence on their operation skills on 'multiplication of fraction', and error types of 'understanding of questions' and 'understanding of solving process' have the most effects on the influence.
This study analyzed student noticing in a lesson that emphasized relational understanding of equal signs for first graders from four aspects: centers of focus, focusing interactions, mathematical tasks, and nature of the mathematical activity. Specifically, the instructional factors that emphasize the relational understanding of equal signs derived from previous research were applied to a first-grade addition and subtraction unit, and then lessons emphasizing the relational understanding of equal signs were conducted. Students' noticing in this lesson was comprehensively analyzed using the focusing framework proposed in the previous study. The results showed that in real classroom contexts centers of focus is affected by the structure of the equation and the form of the task, teacher-student interactions, and normed practices. In particular, we found specific teacher-student interactions, such as emphasizing the meaning of the equals sign or using examples, that helped students recognize the equals sign relationally. We also found that students' noticing of the equation affects reasoning about equation, such as being able to reason about the equation relationally if they focuse on two quantities of the same size or the relationship between both sides. These findings have implications for teaching methods of equal sign.
This study was designed to understand PCK to improve professionalism of teachers and derive implications about proper teachings methods. For achieving these research purposes, different PCK and teaching methods in class of three teachers were compared and analyzed targeting arithmetic operation unit of fraction. For this study, criteria of PCK analysis of teachers was set, PCK questionnaires were produced and distributed, teachers had interviews, PCK of teachers were analyzed, two times fraction class was observed and analyzed, and PCK of teachers and their classes were compared. Followings are results to analyze PCK of teachers about fraction. In relation to PCK of three teachers, first of all, A teacher accurately understood concepts of fraction and learners' errors that may occur when they study fraction. Also, he(she) proposed concrete teaching strategies for fraction based on manipulated materials. B teacher also understood concepts of fraction and learners' errors accurately too. On the other hand, C teacher laid stress on knowledge to stress principles and taught that they are bases for every class. These results mean that self-training and inservice- training should be efficiently upgraded to improve PCK of teachers.
Recently, the 2022 revised mathematics curriculum has established achievement standards for equal sign and equality, and efforts have been made to examine teaching methods and student understanding of relational understanding of equal sign. In this context, this study conducted a lesson that emphasized relational understanding in an introduction to equal sign, and compared and analyzed the understanding of equal sign between the experimental group, which participated in the lesson emphasizing relational understanding and the control group, which participated in the standard lesson. For this purpose, two classes of students participated in this study, and the results were analyzed by administering pre- and post-tests on the understanding of equal sign. The results showed that students in the experimental group had significantly higher average scores than students in the control group in all areas of equation-structure, equal sign-definition, and equation-solving. In addition, when comparing the means of students by item, we found that there was a significant difference between the means of the control group and the experimental group in the items dealing with equal sign in the structure of 'a=b' and 'a+b=c+d', and that most of the students in the experimental group correctly answered 'sameness' as the meaning of equal sign, but there were still many responses that interpreted the equal sign as 'answer'. Based on these results, we discussed the implications for instruction that emphasizes relational understanding in equal sign introduction lessons.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.