• Title/Summary/Keyword: 덕트팬

Search Result 54, Processing Time 0.026 seconds

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Effect of Geometric Variation on Aerodynamic Characteristics of a Shrouded Tail Rotor (덮개꼬리로부터의 형상변화에 따른 공력 특성에 관한 연구)

  • Lee, H.-D.;Kang, H.-J.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2005
  • In the early stage of helicopter design, an optimal configuration is usually determined after a numerous parametric study about the aerodynamic performance due to geometric variation. In order to improve the aerodynamic performance of a shrouded tail rotor, optimization of the tip clearance gap between blade and shroud, the blade planform shape, and the arrangement of blade spacing is required. In the present study, the aerodynamic performance characteristics of a shrouded tail rotor due to geometric variation was investigated by using an inviscid compressible unstructured mesh flow solver for rotary wings.

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements (초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Kim, Jong-Won;Lee, Ju-Kyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow (덕트 내 원심식 축류팬의 성능변화에 관한 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Yu, Seung-Hun;Lee, Jai-Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Study on the Performance Improvement of Roof Fan Used for Local Exhaust System Installed in Apartment (공동주택의 국소배기용 루프팬 성능개선에 관한 연구)

  • Kwon, Yong-Il;Jeong, Yeol-Wha;Ahn, Jung-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Performance improvement of local exhaust system used in toilet and cooking place are main concern in a field of ventilation. In Korea, There are many high riser residential apartments in recent years. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depends on stack effect. This study investigates on the performance improvement of terminal device, roof fan, of vertical spiral duct used in high riser residential apartments. This paper focuses mainly on the effect of accessories, number or shape of blades, composed of roof fan with function of exhaust air volume of toilet and cooking place. Roof fan with 10 blades is observed at optimum exhaust performance in this study.

Study on Noise Reduction by Optimizations of In-line Duct Flow (덕트의 유로 최적화를 통한 소음저감 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Mo, Jin-Yong;Lee, Jai-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

A Study on the Ventilation Efficiency of Apartment Housing Bathroom Based on the Flexible Installation Method of Exhaust Fan. (공동주택 욕실 배기팬의 플랙시블 덕트 시공상태에 따른 환기효율에 관한 연구)

  • Lee Kwang Myung;Ham Jin Sik
    • Journal of the Korean housing association
    • /
    • v.16 no.1
    • /
    • pp.73-79
    • /
    • 2005
  • The ventilation efficiency of apartment housing bathroom has been measured by the flexible's diameter, length, and installation format to the exhaust In. The gas density attenuation method of Tracer Gas Method has been specifically utilized for this measurement. Full size mock-up of apartment housing bathroom, which was approximately $100 m^2$ in size, has been established for the ventilation emciency measurement. In addition, the ventilation efficiency has been studied by the possibility of air-supply In. The diameters of flexible are 100 mm, 125 mm, and 150mm. It also have the length of 1.0m, and 1.5 m. The installation formats are I shape, L shape, and S shape. As a result of this measurement, the flexible which has the highest ventilation efficiency was the one has bigger diameter, short in length, and I shape installation format.