• Title/Summary/Keyword: 댓글

Search Result 294, Processing Time 0.029 seconds

A Filtering Method of Malicious Comments Through Morpheme Analysis (형태소 분석을 통한 악성 댓글 필터링 방안)

  • Ha, Yeram;Cheon, Junseok;Wang, Inseo;Park, Minuk;Woo, Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.750-761
    • /
    • 2021
  • Even though the replying comments on Internet articles have positive effects on discussions and communications, the malicious comments are still the source of problems even driving people to death. Automatic detection of malicious comments is important in this respect. However, the current filtering method of the malicious comments, based on forbidden words, is not so effective, especially for the replying comments written in Korean. This paper proposes a new filtering approach based on morpheme analysis, identifying coarse and polite morphemes. Based on these two groups of morphemes, the soundness of comments can be calculated. Further, this paper proposes various impact measures for comments, based on the soundness. According to the experiments on malicious comments, one of the impact measures is effective for detecting malicious comments. Comparing our method with the clean-bot of a portal site, the recall is enhanced by 37.93% point and F-measure is also enhanced up to 47.66 points. According to this result, it is highly expected that the new filtering method based on morpheme analysis can be a promising alternative to those based on forbidden words.

Design and Implementation of a LSTM-based YouTube Malicious Comment Detection System (유튜브 악성 댓글 탐지를 위한 LSTM 기반 기계학습 시스템 설계 및 구현)

  • Kim, Jeongmin;Kook, Joongjin
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.18-24
    • /
    • 2022
  • Problems caused by malicious comments occur on many social media. In particular, YouTube, which has a strong character as a medium, is getting more and more harmful from malicious comments due to its easy accessibility using mobile devices. In this paper, we designed and implemented a YouTube malicious comment detection system to identify malicious comments in YouTube contents through LSTM-based natural language processing and to visually display the percentage of malicious comments, such commentors' nicknames and their frequency, and we evaluated the performance of the system. By using a dataset of about 50,000 comments, malicious comments could be detected with an accuracy of about 92%. Therefore, it is expected that this system can solve the social problems caused by malicious comments that many YouTubers faced by automatically generating malicious comments statistics.

Research on Factors Affecting the Effects of Reading Replies (댓글 읽기 효과에 영향을 미치는 요인에 관한 연구)

  • Lee, Jae-Shin;Lee, Min-Young
    • Korean journal of communication and information
    • /
    • v.42
    • /
    • pp.249-279
    • /
    • 2008
  • This study tried to examine the effect of reading replies on the changes of attitudes towards the subject of online news articles. For that purpose, an experiment was conducted in which participants were asked to read an article and the replies attached. Attitudes were measured before and after reading replies. Another interest of this research was to examine factors affecting the attitude change after reading replies. It was found that while credibility of replies and efficacy belief of the news subject had negative impacts on the attitudes, individuals' information seeking characteristics gave positive impacts on the attitudes after reading replies. This study concludes with discussion and implications of the findings.

  • PDF

A Success Prediction Model for Debut Webtoon Based on Reader reaction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 활용한 독자 반응 기반 웹툰 데뷔작 성공 예측 모델)

  • Heo, Eun Yeong;Kim, Seung Hwa;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.770-773
    • /
    • 2019
  • 본 논문에서는 매년 성장하는 웹툰 시장 속에서 신인 작가들이 성공할 수 있는 성공 요인을 밝히고자 하였다. 국내 1위 웹툰 플랫폼인 네이버 웹툰 중 데뷔작을 기준으로 완결 웹툰 212개, 연재 중인 웹툰 112개, 총 324개의 웹툰을 수집하여 연구를 진행하였다. 기존 선행연구와의 차별화를 두기 위해 독자의 직접적인 반응 중 하나인 댓글을 성공 요인에 포함하였다. 댓글에 담긴 긍정, 부정을 나타내는 주관을 탐지하기 위해 딥러닝을 이용하여 감성 분석을 실시하였다. 각 웹툰에 대한 댓글 반응을 포함하여 평균, '좋아요' 수, 장르 그리고 첫 화 댓글 수와 5화까지 평균 댓글 수를 흥행에 영향을 미치는 독립변수로 사용했다. 댓글 반응이 중요 요인인지를 확인하기 위해 각 모델 생성 시 댓글 반응을 포함한 모델과 포함하지 않은 모델을 생성하여 성능 평가를 실시하였다. 로지스틱 회귀분석, 아다 부스트, 그리고 서포트 벡터 머신 모델을 정확도와 ROC 그래프를 이용해 효율성을 비교하고, 이를 통해 댓글 반응을 활용한 로지스틱 회귀 모델이 가장 적합하다고 판단하였다. 모델 생성 결과 '좋아요' 수, 1화 댓글 수, 댓글 반응 순으로 성공 요인에 많은 영향을 미치는 것을 알 수 있었다.

TRIB: A Clustering and Visualization System for Responding comments on WebBlog (TRIB: 웹블로그 댓글분류 시각화 시스템)

  • Bae, Min-Jung;Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.226-229
    • /
    • 2009
  • 최근 들어 인터넷 게시판이나 개인 블로그 등은 온라인상에서 사람들의 정보 공유나 의견 교환의 중요한 매체가 되고 있다. 많은 수의 블로그들은 현재 사회적으로 이슈가 되는 여러 문제들을 반영하고 있다. 또한 최근 댓글을 통해 적극적으로 자신의 의사 표현하거나 다른 사람들의 의견을 살피는 인터넷 사용자의 증가로 인터넷 뉴스나 블로그 기사에 많은 수의 댓글이 달리고 있다. 그러나 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 자신이 원하는 내용의 댓글을 검색하거나 전체 댓글에 대한 전반적인 파악은 힘든 일이다. 따라서 본 논문에서는 기사에 달린 많은 수의 댓글들을 분류하고, 이를 시각화 하는 시스템인 TRIB(Telescope for Responding comments for Internet Blog)을 제안한다. TRIB은 미리 정의된 사용자 정의 사전을 이용하여 댓글을 내용에 따라 분류하여 시각화 하므로 사용자들은 자신의 관심과 흥미에 따라 개인화 된 뷰를 볼 수 있다. 1,000개 이상의 댓글을 가진 뉴스 기사들을 대상으로 한 실험을 통해 TRIB 시스템의 댓글 분류와 시각화 성능을 보인다.

Analysis for Comment of Internet Posts (인터넷 게시물의 댓글 분석)

  • Tak, Haesung;Cho, Hwan-Gue
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.957-960
    • /
    • 2012
  • 최근 블로그나 인터넷 게시판과 같은 온라인 커뮤니티가 활발히 사용됨에 따라 댓글을 통해 자신의 의견을 적극적으로 나타내고자하는 이용자들이 계속해서 증가하고 있다. 실제 댓글 활동이 활발한 인터넷 게시판에서는 수천 개의 댓글이 달린 게시물도 심심치 않게 찾아볼 수 있다. 본 논문에서는 인터넷 게시판의 글의 정보와 댓글을 이용하여, 댓글의 확장과 조회 수와의 상관관계에 대해 알아보았다.

Automatic Generation of Emotional Comments on News-Articles using Sequence-to-Sequence Model (Sequence-to-Sequence 모델을 이용한 신문기사의 감성 댓글 자동 생성)

  • Park, Chun-Young;Park, Yo-Han;Jeong, Hye-Ji;Kim, Ji-Won;Choi, Yong-Seok;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.233-237
    • /
    • 2017
  • 본 논문은 신문기사의 감성 댓글을 생성하기 위한 시스템을 제시한다. 감성을 고려한 댓글 생성을 위해 기존의 Sequence-to-Sequence 모델을 사용하여 긍정, 부정, 비속어 포함, 비속어 미포함 유형의 4개의 감성 모델을 구축한다. 하나의 신문 기사에는 다양한 댓글이 달려있지만 감성 사전과 비속어 사전을 활용하여 하나의 댓글만 선별하여 사용한다. 분류한 댓글을 통해 4개의 모델을 학습하고 감성 유형에 맞는 댓글을 생성한다.

  • PDF

Automatic Generation of Emotional Comments on News-Articles using Sequence-to-Sequence Model (Sequence-to-Sequence 모델을 이용한 신문기사의 감성 댓글 자동 생성)

  • Park, Chun-Young;Park, Yo-Han;Jeong, Hye-Ji;Kim, Ji-Won;Choi, Yong-Seok;Lee, Kong-Joo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.233-237
    • /
    • 2017
  • 본 논문은 신문기사의 감성 댓글을 생성하기 위한 시스템을 제시한다. 감성을 고려한 댓글 생성을 위해 기존의 Sequence-to-Sequence 모델을 사용하여 긍정, 부정, 비속어 포함, 비속어 미포함 유형의 4개의 감성 모델을 구축한다. 하나의 신문 기사에는 다양한 댓글이 달려있지만 감성 사전과 비속어 사전을 활용하여 하나의 댓글만 선별하여 사용한다. 분류한 댓글을 통해 4개의 모델을 학습하고 감성 유형에 맞는 댓글을 생성한다.

  • PDF

Discrimination System for Abusive Comments using Machine Learning (기계 학습을 이용한 악성 댓글 판별 시스템)

  • Shin, Hyo-jeong;Choi, So-Woon;Lee, Kyung-ho;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.178-180
    • /
    • 2015
  • 본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.

  • PDF

Comment Classification System using Deep Learning Classification Algorithm based on Crowdsourcing (크라우드소싱 기반의 딥러닝 분류 알고리즘을 이용한 댓글 분류 시스템)

  • Park, Heeji;Ha, Jimin;Park, Hyaelim;Kang, Jungho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.864-867
    • /
    • 2021
  • 뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.