• Title/Summary/Keyword: 댐퍼 설계

Search Result 234, Processing Time 0.028 seconds

Experimental Parametric Study on the Rotordynamic Characteristics and Optimal Design of a Flexible Rotor Supported by a Slotted-Ring Electro-Rheological Squeeze Film Damper (슬롯 링 형상을 갖는 전기 유변 스퀴즈 필름 댐퍼로 지지된 연성 로터의 동특성 및 최적설계 파라미터 실험 연구)

  • 이용복;김창호;이남수;최동훈;정시영
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A discharge free Electro-Rheological Squeeze Film Damper (ER-SFD) with predetermined-clearances at leakage ends can inherently eliminate electric discharge problems while still supplying stable leakage control. Test results show that the damping force of the slotted-ring ER-SFD is mainly affected by electric voltage, oil supply pressure, position of the damper and ratio of effective surface area of slotted-rings. As the supply voltage is larger, the amplitudes of both slotted ER-SFD and rotor are decreased at first and second critical speeds. The influence of the oil supply pressure and the effective surface area ratio was shown mainly near the first critical speed. The effective surface area ratio of slotted-rings influences the reduction of flexible rotor vibration. As a result, experimental results confirm that the slotted-ring ER-SFD satisfactorily controls the flexible rotor vibration, while eliminates the inherent electric discharge problems in conventional ER-SFDs.

A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance (차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

Performance Estimation of Semi-active Real-time Feedback Vibration Control System (준능동형 실시간 Feedback 진동제어시스템의 성능평가)

  • Heo, Gwang Hee;Jeon, Joon Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • This paper is concerned to constitute a semi-active realtime feedback vibration control system and evaluate it through experiments in order to control in realtime the vibration externally generated, specially on the bridges which is structurally flexible. For the experiment of vibration control, we built a model bridge structure of Seohae Grand Bridge in a 1/200 reduced form and inflicted El-centro wave on the model structure also in a reduced force considering the lab condition. The externally excited vibration was to be controled by placing a shear type MR damper vertically on the center of bridge span, and the response (displacement and acceleration) of structure was to be acquired by placing LVDT and Accelerometer at the same time. As for the experiment concerning controlling vibration, a realtime feedback vibration control experiments were performed under each different condition largely such as un-control, passive on/off control, Lyapunov stability theory control, and Clipped-optimal control. Its control performance under different condition was quantitatively evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the power required for control on the center of span. The results of experiments proved that the Lyapunov control and clipped-iptimal control were effective to decrease the displacement and acceleration of the structure, and also to decrease the power consumption to a great extent. Finally, the semi-active realtime feedback vibration control system constituted in this research was proven to be an effective way to control and manage the vibration generated on bridge structure.

Experimental Study on Features of Air Egress Velocity in Vestibule Pressurization System (특별피난계단 부속실 제연설비의 방연풍속 기류특성에 관한 실험적 연구)

  • Ryu, Sung-Ho;Lee, Su-Kyung;Hong, Dae-Hwa;Yoon, Myong-O;Choi, Keum-Ran;Park, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • In this study, we confirmed the fact that air egress velocity of pressure differential system which is installed in vestibule of smokeproof stairway in domestic high-rise building becomes back-flow into the vestibule not into the livingroom when the doors open to escape in case of fire by actual measurement. It concerned that fire smoke inflow into the vestibule of smokeproof stairway. so, reflux symptoms were developing the condition does not occur by creating an area of $2m^2$ and a model. if it‘s area is less, airflow in upper area was severely reflux. in the case upward 45 gradient of supply damper’s angle of blade, The results that reflux symptoms include upper door but bottom has some reflux. also vestibule of smokeproof stairway‘s area of $4m^2$ in the living room door in the direction of the flow distributon was normal. if a vestibule of smokeproof stairway is smaller, it designed to be performance-based design should be.

Characteristics of Air Egress Velocity in Vestibule Pressurization System Using the Fire Dynamics Simulator (FDS를 이용한 특별피난계단 부속실 제연설비의 방연풍속 기류특성)

  • Ryu, Sung-Ho;Lee, Su-Kyung;Hong, Dae-Hwa;Choi, Keum-Ran
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.153-159
    • /
    • 2010
  • In this study, we confirmed the fact that air egress velocity of pressure differential system installed at vestibule of smokeproof stairway in domestic high-rise building becomes back-flow to stair-lobby at upper vestibule. Rather it do not back-flow to the livingroom. when fire occur and the door opens to escape from fire zone. so we carry out actual and computational fluid dynamics measurement. In the case upward 45 gradient of supply damper's blade, The simulation results that air flow of upper vestible is steady but back-flow phenomenon occurred at the bottom. However, in the case of $4m^2$, direction of the flow was ideal to living room. If a vestibule’s area is smaller, it must be designed and built according to performance-based design.

A Study on Partial-Load Performance Experiment & Analysis for Dynamic Transient Effect of Free Shaft Gas Turbine Engine (분리 축 가스터빈엔진의 동역학적 천이효과에 의한 부분부하성능 시험 및 해석에 관한 연구)

  • 김경두;이원중;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.183-188
    • /
    • 2003
  • The present work was conducted to build a propulsion system for an airship. For this purpose, free shaft gas-turbine was modified to produce electrical power. he experiments were carried out to analyze the driving rotor condition at various power shaft loads. From this analysis, an appropriate damping device was required, and the changeable inertial moment from the fly-wheel was applied. Without the appropriate damping device, instability was found, and it was resulted as power loss. Also the amount of inertial moment was certified by the performance of dynamic transient effects from the engine test results. Knowledge gained from this research could benefit the propulsion and power conversion community by increasing the better understanding of shaft loads and inertial effects.

  • PDF

A Study on the Small Size Loudspeaker for Hi-Fi Low Frequency Sound Reproduction (저음재생용 소형 스피커의 개발에 관한 연구)

  • 남경준;이채봉;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.31-37
    • /
    • 2001
  • Following the recent trends of reducing the size of multimedia devices, we tried for the development of a compact-sized speaker to produce low-frequency sounds efficiently. For this work, equivalent-circuit analysis was used to get fundamental resonant frequency and then the structure of speaker components has been changed appropriately. As a result, an 80mm small-sized speaker was developed. The performance test showed that the resonant frequency of our system is 79 Hz while that of numerical analysis was 81Hz. At a distance of 1m from our speaker, the frequency ranges 80 Hz to 15kHz and the average sound pressure was found to be 84±2 dB. The second (at 400 Hz) and the third (at 100 Hz) high-frequency distortions of our system were 0.5% and 1.8% respectively, which is to be compared with the distortions of 0.9% and 6% in conventional speakers.

  • PDF

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

A Stdy on Clutch-disc Torsional Characteristics for Torsional Vibration Reduction at Idling (공회전시 비틀림 진동 저감을 위한 클러치 비틀림 특성 연구)

  • 홍동표;정태진;김상수;태신호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.82-87
    • /
    • 1994
  • 자동차 엔진의 주기적인 연소과정 동아네 생성된 힘에 의해 엔진의 크랭크 샤프트에 회전 불균일성이 나타난다. 이것은 엔진 플라이휘일 부분에 비틀림 변동토크를 발생시키고, 이 토크는 클러치를 통하여 변속기의 인풋기어(input gear)에 전달되어 변속기에 비틀림 진동을 일으키는 주요 원인이 된다. 공회전시 변속기에서 기어의 충돌은 주로 이 비틀림 변동토크에 의해 발생하며, 이 충돌은 차내 소음의 원인이 된다. 또한 엔진의 경량화 및 고출력화에 따른 회전수 변동의 증가는 비틀림 변동토크를 증가시켜 변속기에 커다란 진동을 초래한다. 시뮬레이션을 사용한 클러치 비틀림 기구의 적절한 특성치를 구하는 것은 클러치 설계에 효율적이고, 이미 여러 연구 결과들이 보고되었다. H.Arai은 2자유도 비선형 모델을 사용하여 클러치 접속시 발생하는 외란과 계의 안정성을 고려하여 치타음 저감을 위한 시뮬레이션을 수행하였고, S.Ohnuma은 비선형 2단 비틀림 특성을 가진 클러치 디스크의 설계에 대해서, 그리고, T.Fujimoto와 R.J.Comparin는 치타음의 발생구조와 특성을 고찰하고 비선형 비틀림 공진 저감에 의한 치타음 저감 기법에 대하여 연구하였다. 그리고, Wu Hui-Le는 자동차 동력전달계의 비틀림 진동 현상을 실험과 이론적인 계산을 통해 연구하였고, G.J.Fudala는 다자유도 모델을 이용하여 클러치의 비틀림 특성에 따라 주파수분석을 수행하여 치타음 저감 방법을 연구하였다. 또한, T.Sakai는 5자유도 모델을 이용하여 엔진 공회전시 발생하는 치타음에 대해 이론과 실험을 통해 해석하고, 엔진 회전수 변동, 클러치 특성, 변속기의 드래그(drag) 토크의 영향과 치타음 저감을 위한 개선된 클러치 특성을 제시하였다. 클러치는 동력을 전달 또는 차단하는 기능 뿐만 아니라 엔진이나 변속기에서 발생하는 소음이나 진동을 저감시키는 기능을 가지고 있다. 따라서 엔진 공회전시에 발생하는 치타음(rattle noise)이나 비틀림 진동을 저감시키는 방법으로는 여러가지가 있으나 클러치 디스크(clutch disc)의 비틀림 기구의 설계 인자들을 적절히 조절함으로써 변속기의 인풋기어에 전달되는 비틀림 진동을 저감시키는 방법이 일반적으로 수행되어지고 있다. 본 연구는 4 실린더 4 싸이클 1.5L 엔진을 장착한 경승용차의 실차실험을 통해 공회전시 엔진 플라이휘일과 인풋기어에서의 회전수 변동을 측정하고, 이 실험 데이타를 기초로 하여 엔진 토크 및 변속기에서의 드래그 토크를 계산하여 엔진-변속기 인풋기어의 반한정계 2자유도 진동모델과 비틀림 특성을 가진 클러치 디스크의 프리댐퍼 영역에 대해 시뮬레이션을 수행하여 클러치 비틀림 기구의 설계인자인 비틀림 강성, 히스테리시스 토크에 따른 비틀림 진동 저감 효과를 연구하고자 한다.

  • PDF

Study on the Assessment of the Criteria on a Door Closer for the Optimum Design of the Access Door of a Smoke Control Zone (제연구역 출입문의 최적 설계를 위한 도어클로저의 기준 산정에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to assess the criteria on a floor hinge and door closer for the optimum design of the access door of a smoke control room. The door opening force due to differential pressure is 60.75 N, 40.5 N, 32.91 N and 12.66 N when the differential pressure is 60 Pa, 40 Pa, 32.5 Pa and 12.5 Pa, respectively. The door opening force of the floor hinge and door closer to which the criteria of KS F 2806 are applied is 27.5 N, 40 N, 75 N, 100 N and 125 N for the Nos. 1, 2, 3, 4 and 5 class floor hinges and door closers, respectively. This study compared the differential pressure and opening force limits of floor hinges and door closers with the values specified in NFSC 501A and found that they exceeded the criteria specified in NFSC 501A. Therefore, it is necessary to reflect the differential pressure and smoke control wind speeds as well as the opening forces specified in NFSC 501A on the design of floor hinges and door closers. The installation conditions of floor hinges and door closers of access doors differ depending on the type and name of a smoke control damper. This study found that Nos. 1, 2 and 3 floor hinges and door closers could be installed for access doors with low differential pressure and that Nos. 1 and 2 floor hinges and door closers could be installed for access doors with normal differential pressure.