• Title/Summary/Keyword: 대형디젤

Search Result 164, Processing Time 0.029 seconds

A Study of Low Temperature Combustion System Optimization for Heavy Duty Diesel Engine (대형디젤엔진의 저온연소 시스템 최적화에 관한 연구)

  • Han, Youngdeok;Shim, Euijoon;Shin, Seunghyup;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-184
    • /
    • 2015
  • According to the regulation on the environment and fuel efficiency is becoming strict, many experiments are conducted to improve efficiency and emission in internal combustion engines. LTC (Low temperature combustion) technology is a promised solution for low emissions but there are a few barriers for the commercial engine. This paper includes optimization that applies LTC method to heavy duty diesel engine. Adequate LTC was applied to low and middle load as adaptability in heavy duty diesel engine, and optimization focused on reduction of fuel consumption was proceeded at high load. Through this research, strategy for practical use of LTC was selected, and fuel consumption has improved on the condition that satisfies the emission regulation at systematic viewpoint.

Numerical Study on Strategy of Applying Low Pressure Loop EGR for a Heavy Duty Diesel Engine to Meet EURO-4 Regulation (저압라인 EGR을 적용한 대형 디젤엔진의 EURO-4 규제 대응 전략에 관한 수치적 연구)

  • Ha Changhyun;Lee Seungjae;Lee Kyoseung;Chun Kwangmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • EGR system has been widely used to reduce NOx emission in light duty diesel engines, but its application to heavy duty diesel engine is not common yet. In this study, simulation model for EURO-3 engine was developed using commercial code WAVE and then verified by comparison with experimental results in performance and emission. Possibility to meet EURO-4 regulation using modified EURO-3 engine with LPL EGR system was studied. Each components of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13 and injection timing and quantity were changed to compensate engine performances, because applying EGR causes power reduction. As a results of the simulation, it was found that EURO-4 NOx regulation could be achieved by applying LPL EGR system to current EURO-3 engine even with some BSFC deterioration.

Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS (GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정)

  • Park, Boyoung;Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • This study presents a method to calculate carbon dioxide emissions of diesel vehicles operated in an underground mine using Geographic Information Systems (GIS). An underground limestone mine in Korea was selected as the study area. A GIS database was constructed to represent the haulage roads as a 3D vector network. The speed of dump trucks at each haulage road was investigated to determine the carbon dioxide emission factor. The amount of carbon dioxide emissions related to the truck's haulage work could be calculated by considering the carbon dioxide emission factor at each haulage road and the haulage distance determined by GIS-based optimal route analysis. Because diesel vehicles are widely utilized in the mining industry, the method proposed in this study can be used and further improved to calculate the amount of carbon dioxide emissions in mining sites.

A development of integrated monitoring and diagnosis system for marine diesel engine using time-series data (시계열 데이터를 이용한 선박용 디젤엔진 통합 감시 및 진단 시스템의 개발)

  • Rhyu, Keel-Soo;Park, Jong-Il;Hwang, Hun-Gyu;Park, Dong-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.744-750
    • /
    • 2014
  • The monitoring and abnormality warning of marine diesel engine are important to take appropriate responses for safety navigation. If maintenance engineers do not take appropriate response because of diagnosis mistakes, it will occur a nasty accident. Therefore, we need integrated monitoring and diagnosis system for supporting a diagnosis objectively. In this paper, we analyze time-series data which measured by real-time, monitor the changing of conditions and trends of the analyzed data. Furthermore, we design and implement a monitoring and diagnosis system for objective supporting of real-time diagnosis. When the integrated monitoring and diagnosis system is adopted, it can help to improve stability of marine diesel engine by providing abnormality warning alarm with appropriate responses.

Development of LVDT-Based Measuring System of the Cylinder Liner Wear for Marine Diesel Engines and Its Performance Evaluation (LVDT를 이용한 선박용 디젤 엔진의 실린더 라이너 마모 계측시스템 개발 및 성능평가)

  • Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.829-834
    • /
    • 2011
  • This paper introduces a new system which measures abrasion quantity of cylinder liners of large-scale marine diesel engines. The proposed system consists of three parts; measurement part where an LVDT, a temperature sensor, a camera and LED for lighting control are installed, monitoring part which accomplishes measurement command transmission and monitoring based on PC or notebook, and master control part which controls the measurement part and transfers measurement data to the monitoring part. The accuracy of the developed system is compared with that of an internal micrometer with 1/100 mm accuracy.

Performance Evaluation of Domestic -made DOC for the Heavy-duty Diesel Engine (국내 제작된 대형 디젤산화촉매의 배출가스 성능평가)

  • 정일록;엄명도;김종춘;김태승;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.15-23
    • /
    • 1999
  • In recent years, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle . Especially, diesel particulate matters(DPM) are hazardous air pollutant s to human health and environment. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust aftertreatment. In this study, a diesel oxidation catalyst(DOC) that is one of diesel exhaust aftertreatments was made for performance evaluation . It was tested for NA and turbocharged engine by D-13 mode that currently be used for regulation driving test mode in Korea Scanning mobility particle sizer (SMPS) was used for the analysis of the particle size distribution with and w/o DOC. As the results , for NA and tubochartged engine, CO, THC, DPM was respectively reduced 85.7, 40.7,3.3% and 79.1, 53.1, 11.6% by DOC. Test results of particle size distribution was showed that particle number is 107 ~108per ㎤ , 2 $\times$105 ~5$\times$105$\mu\textrm{g}$/㎥ for weight concentration and 100~200nm for particle mean size in diesel engine and there is no effect to reduce the particle concentration by the DOC.

  • PDF

A Study on Characteristics of DPF for Heavy-duty Diesel Engine on Pollutant Emission Reduction (대형디젤엔진 배출가스 저감을 위한 DPF의 재생특성 연구)

  • Eom, D.K.;Lee, S.H.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2008
  • The combustion purpose of diesel engine is to reduce the emission of green gas and to produce high output. Generally, the regulation matter of emission gas is largely diveded by 'THC', 'NOx', 'CO' and 'PM'. Among those matters, the most problem is to disgorge into 'PM', the character of diesel combustion. Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to exactly evaluate the DPF devices according to the regulation of DPF certificate test procedure fur retrofit. To do carry out the above-mentioned description the understanding of that regulation like the standard of PM reduction is needed. In this study the test procedure including test cycle and BPT test condition was examined, and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and Seoul-10 mode test, no defect was showed.

  • PDF

Source Identification and Coutermeasure Application for Outdoor Noise of Diesel Engine Generator (디젤 엔진 발전기의 실외 소음원 규명 및 대책수립 사례)

  • 김원진;전민규;김중기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.50-54
    • /
    • 1996
  • 최근들어 전력수요와 상시 전력공급이 요구되는 시설이 증가함에 따라 독립적으로 전력을 공급할 수 있는 상용 또는 비상용발전기가 많이 이용되고 있는 추세이다. 이러한 소형 발전시스템에는 디젤엔진이나 터빈 엔진에 발전기를 연결하여 전력을 공급하는 코젠 시스템(co-generation system)이 주로 이용된다[1]. 일반적으로 코젠시스템은 운전중에 매우 높은 수준의 소음이 발생되므로 건물 주변이나 사람의 왕래가 잦은 곳에 설치되는 경우에 필히 소음저감을 위한 대책이 필요하게 된다[2,3]. 본 사례는 대형놀이시설의 전력공급용으로 설치된 옥내(발전실내)의 상용/비상용 발전기(3600 KW 디젤엔진 2대)에서 발생한 상당량의 소음이 놀이시설주변까지 전달되어, 소음원 및 그 전달경로를 규명하고 대책을 수립한 내용이다. 놀이시설의 개장을 앞두고 소음문제가 발생되었기 때문에 신속하고 현실적인 해결책의 적용이 요구되었으므로 발전기 및 발전실 주변의 소음레벨 및 주파수특성의 분석을 통하여 주소음원을 규명하는 방법을 택했다. 분석결과로부터 주 소음원은 엔진 배기구에서 발생되는 저주파수 특성을 갖는 소음으로 규명되었고, 그 주파수특성에 적합한 흡음 및 반사특성을 동시에 갖는 조합형 2차 소음기를 추가로 설치하여 발전실 주변소음레벨을 크게 저감할 수 있었다.

  • PDF

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

An Experimental Study on Performance and Exhaust Gas in a Heavy-Duty Diesel Engine with Cooled-EGR (Cooled-EGR 대형디젤기관의 성능 및 배기가스에 관한 실험적 연구)

  • 한영출;오용석;오상기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.1-8
    • /
    • 2001
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target for this research is heavy-duty turbo-diesel engine with Cooled EGR. Furthermore, this research has been made efforts to accomplish the regulation on emission for heavy duty diesel engine.

  • PDF