• Title/Summary/Keyword: 대향류 확산화염

Search Result 69, Processing Time 0.03 seconds

Soot formation in Counterflow diffusion of ethylene/propane mixtures (에틸렌/프로판 대향류 확산화염에서 매연생성특성에 대한 실험적 연구)

  • Yoon, S.S.;Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.229-235
    • /
    • 2000
  • Soot formation characteristics in counterflow diffusion flames of ethylene/propane/nitrogen mixtures have been studied experimentally to investigate the soot formation mechanism. The effect of HACA reaction on PAH and soot growth has been experimentally investigated by using 2-D planar LII and PAH LIF techniques.

  • PDF

Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap (채널 간격에 따른 대향류 확산화염의 가연 영역의 변화)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

A Study on Transition of Shrinking Flame Disk to Flame Hole at Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 소화하는 화염디스크로부터 화염구멍으로 천이에 관한 연구)

  • Park, Dea-Geun;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.16-25
    • /
    • 2008
  • Experiments have been conducted to clarify impacts of curtain flow and velocity ratio on low strain rate flame extinction, and to further display transition of shrinking flame disk to flame-hole. Critical mole fractions at flame extinction are examined in terms of velocity ratio, global strain rate, and nitrogen curtain flow rate. It is shown that multi-dimensional effects at low strain rate flames through global strain rate, velocity ratio, and curtain flowrate dominantly contribute to flame extinction and transition of shrinking flame disk to flame hole. Our concerns are particularly focused on the dynamic behavior of an edge flame in shrinking flame disk.

  • PDF

A Study on Chemical Effecta Through Preferential Diffusion of H2 and H in CH4-H2 Counterflow Diffusion Flames (메탄-수소 대향류확산화염에서 H2와 H의 선호확산을 통한 화학적 효과에 관한 연구)

  • Park, Jeong;Kwon, Oh-Boong;Lee, Eui-Ju;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1009-1016
    • /
    • 2007
  • Numerical study on preferential diffusion effects in flame structure in $CH_4-H_2$ diffusion flames is conducted with detailed chemistry. Comparison of flame structures with mixture-averaged species diffusion and suppression of the diffusivities of $H_2$ and H was made. Discernible differences in flame structures are displayed with three species diffusion models. The behaviors of maximum flame temperatures with those species diffusion models are not explained by scalar dissipation rate but by the nature of chemical kinetics. It is seen that the modifcation of flame structure is mainly due to the preferential diffusion of H2 and thereby the nature of chemical kinetics. It is also found that the behaviors of major species with the three species diffusion models are addressed to the nature of chemical kinetics, and this is evident by examining importantly contributing reaction steps to the production and destruction of those chemical species.

Effect of Acetylene Mixing Rate on Synthesis of Carbon Nanotube (탄소나노튜브의 합성에 대한 아세틸렌 혼합 비율의 영향)

  • Kim, Jae-Hyun;Lee, Joo-Hee;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2014
  • In this study, experimental and numerical studies for the synthesis of carbon nanotube(CNT) in methane counterflow diffusion flame have been performed. Methane mixed with acetylene($C_2H_2$) was used as a fuel gas and ferrocene was used as a catalyst for synthesis of CNT. The major parameters was $C_2H_2$ mixing rate and mixing rates were 2 %, 6 %, and 10 %. Characteristics of CNT formation on grid were analyzed from SEM images. the chemical reaction mechanism adopted is GRI-MECH 3.0. Numerical results showed that flame temperature and CO mole fraction were increased with increasing acetylene mixing rate. Experimental results showed that the CNT synthesis in 2% acetylene mixture flame better than that of 6% and 10% acetylene mixture flames. It can be considered that 6% and 10% acetylene mixture flames generated the excessive carbon source and then it interrupted the supplement of the carbon source into ferrocene catalyst. It can be found that the supply of appropriate quantity of carbon source can make effect to synthesis of high purity of CNT.

Near-Extinction Structure of Counterflow Nonpremixed Hydrogen-Air Flames (소염상태 근방에서의 대향류 수소확산화염의 구조)

  • Kim, H.J.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.77-87
    • /
    • 1997
  • The axisymmetric Navier-Stokes model together with detailed chemical kinetics and variable transport properties has been applied to analyze the effects of the multidimensional flow on the flame characteristics in the nitrogen-diluted hydrogen counterflow nonpremixed flame. Computations are performed for two nozzle exit area-averaged velocities. Effects of multidimensional flow and strain rate on the near-extinction structure of the highly diluted hydrogen flames are discussed in detail.

  • PDF

Numerical Simulations on Nonlinear Behaviors of Diffusional-Thermal Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 확산-전도 불안정의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.695-702
    • /
    • 2002
  • Nonlinear dynamics of striped diffusion flames, by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is numerically investigated by examining various two-dimensional flame-structure solutions. The Lewis numbers for fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed in the model. Particular attention is focused on identifying the flame-stripe solution branches corresponding to each distinct stripe pattern and hysteresis encountered during the transition. At a Damkohler number slightly greater than the extinction Damkohler number, eight-stripe solution first emerges from one dimensional solution. The eight-stripe solution survives Damkohler numbers much smaller than the extinction Damkohler number until the transition to four-stripe solution occurs at the first forward transition Damkohler number. At the second forward transition Damkohler number, somewhat smaller than the first transition Damkohler number, the transition to two-stripe solution occurs. However, anu further transition from two-stripe solution to one-stripe solution is not always possible even if one-stripe solution can be independently accessed for particular initial conditions. The Damkohler number ranges for two-stripe and one-stripe solutions are found to be virtually identical because each stripe is an independent structure if distance between stripes is sufficiently large. By increasing the Damkohler number, the backward transition can be observed. In comparison with the forward transition Damkohler numbers, the corresponding backward transition Damkohler numbers are always much greater, thereby indicating significant hysteresis between the stripe patterns of strained diffusion flames.

Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames (저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과)

  • Yun, Jin-Han;Keel, Sang-In;Hwang, Dong-Jin;Choi, Yun-Jin;Ryu, Jung-In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF