Browse > Article
http://dx.doi.org/10.3795/KSME-B.2007.31.12.1009

A Study on Chemical Effecta Through Preferential Diffusion of H2 and H in CH4-H2 Counterflow Diffusion Flames  

Park, Jeong (부경대학교 기계공학부)
Kwon, Oh-Boong (부경대학교 기계공학부)
Lee, Eui-Ju (부경대학교 안전공학부)
Yun, Jin-Han (한국기계연구원 청정환경기계연구센터)
Keel, Sang-In (한국기계연구원 청정환경기계연구센터)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.31, no.12, 2007 , pp. 1009-1016 More about this Journal
Abstract
Numerical study on preferential diffusion effects in flame structure in $CH_4-H_2$ diffusion flames is conducted with detailed chemistry. Comparison of flame structures with mixture-averaged species diffusion and suppression of the diffusivities of $H_2$ and H was made. Discernible differences in flame structures are displayed with three species diffusion models. The behaviors of maximum flame temperatures with those species diffusion models are not explained by scalar dissipation rate but by the nature of chemical kinetics. It is seen that the modifcation of flame structure is mainly due to the preferential diffusion of H2 and thereby the nature of chemical kinetics. It is also found that the behaviors of major species with the three species diffusion models are addressed to the nature of chemical kinetics, and this is evident by examining importantly contributing reaction steps to the production and destruction of those chemical species.
Keywords
Chemical Kinetics; Diffusivity Suppression; Flame Structure; Preferential Diffusion;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Liu, F., Guo, H., Smallwood, G. J. and Gulder, O., 2002, 'Numerical Study of the Superadiabatic Flame Temperature Phenomenon in Hydrocarbon Premixed Flames,' Proc. Combust. Inst., Vol. 29: pp. 1543-1550   DOI   ScienceOn
2 Yamaoka, I. and Tsuji, H., 1992, 'An Anomalous Behavior of Methane-air and Methane-hydrogen-air Flames with Nitrogen in a Stagnation Flow,' Proc. Combust. Inst., Vol. 24, pp. 145-512
3 Bauer, C. G. and Forest, T. W., 2001, 'Effect of Hydrogen Addition on the Performance of Methane-fueled Vehicles. Part I: Effect on SI Engine Performance,' Int. J. Hydrogen Energy, Vol. 26, pp. 55-70   DOI   ScienceOn
4 Ren, J-Y., Qin, W., Egolfopoulos, F. N. and Tsotsis, T. T., 2001, 'Methane Reforming and its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane-air Comnbustion,' Chem. Eng. Sci., Vol. 56, pp. 1541-1549   DOI   ScienceOn
5 Park, J., Keel, S. I., Yun, J. H. and Kim, T. K., 2007, 'Effects of Addition of Electrolysis Products in Methane-air Diffusion Flames,' Int. J. Hydrogen Energy, to be Appeared
6 Ruf, B., Behrendt, F., Deutchmann, O., Kleditzsch, S. and Warnatz, J., 2000, 'Modeling of Chemical Deposition of Diamond Films from Acetylene-oxygen Flames,' Proc. Combust. Inst. Vol. 28, pp. 1455-1461
7 Liu, F. and Gulder, O., 2005, 'Effects of H2and H Preferential Diffusion and Unity Lewis Number on Superadiabatic Flame Temperatures in Rich Premixed Methane Flames,' Combust. Flame Vol. 143, pp. 264-281   DOI   ScienceOn
8 Yu, G., Law, C. K. and Wu, C. K., 1986, 'Laminar Flame Speeds of Hydrocarbon+Air Mixtures with Hydrogen Addition,' Combust. Flame Vol 63, pp. 339-347   DOI   ScienceOn
9 Schefer, R. W., Wicksall, M., and Agrawal, A. K., 2002, 'Combustion of Hydrogen-enriched Methane in a Premixed Swirl-stabilized Burner,' Proc. Combust. Inst., Vol. 29, pp. 843-852   DOI   ScienceOn
10 Halter, F., Chauveau, C., Djebaili-Chaumeix, N., and Gokalp, I., 2005, 'Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-hydrogen-air Mixtiures,' Proc. Combust. Inst., Vol. 30, pp. 201-208   DOI   ScienceOn
11 Dagaut, P. and Nicolle, A., 2005, 'Experimental and Setailed Kinetic Modeling of Hydrogen-enriched Natural Gas Blend Oxidation Over Extended Temperature and Equivalence Ratio Ranges,' Proc. Combust. Inst., Vol. 30, pp. 2631-2638   DOI   ScienceOn
12 Di Sarli, V. and Di Benedetto, A., 2007, 'Laminar Burning Velocity of Hydrogen-methane/Air Premixed Flames,' Int. J. Hydrogen Energy, Vol. 32, pp. 637-646   DOI   ScienceOn
13 Law, C. K. and Kwon, O. C., 2004,.'Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-air Flame Propagation,' Int. J. Hydrogen Energy, Vol. 29, pp. 867-879   DOI   ScienceOn
14 Drake, M. C. and Blint, R. J., 1988, 'Structure of Laminar Opposed-flow Diffusion Flames with CO/H2/N2 Fuel,' Combust. Sci. Tech., Vol. 61, pp. 187-224   DOI
15 Wang, P., Hu, S. and Pitz, R., 2007, 'Numerical Investigation of the Curvature Effects on Diffusion Flames,' Proc. Combust. Inst., Vol. 31, pp. 989-996   DOI   ScienceOn
16 Takagi, T., Yoshikawa, Y., Komiyama, M. and Kinoshita, S., 1996, 'Studies on Strained Non-premixed Flames Affected by Flame Curvature and Preferential Diffusion,' Proc. Combust. Inst., Vol. 26, pp. 1103-1110
17 Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, 'Chemkin II: a Fortran Chemical Kinetics Package for Analysis of Gas Phase Chemical Kinetics,' Sandia National Laboratories Report, SAND 89-8009B
18 Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller, J. A., 1994, 'A Fortran Computer Code Package for the Evaluation of Gas-phase Multi-component Transport,' Sandia National Laboratories Report, SAND86-8246
19 Ju, Y., Guo, H., Maruta, K. and Liu, F., 1997, 'On the Extinction Limit and Flammabiliy Limit Non-adiabatic Stretched Methane-air Premixed Flames,' J. Fluid Mech., Vol. 342, pp. 315-334   DOI   ScienceOn
20 Chellian, H. K., Law, C. K., Ueda, T., Smooke, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-field Effects on the Extinction Condition of Methane-air-nitrogen Diffusion Flames,' Proc. Combust. Inst., Vol. 23, p. 503
21 Smith, G. P., Golden, D. M., Frenklach, N. W., Eiteneer, M. B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Dong, S., Gardiner, W. C., Lissianski, -V. V. Jr. and Qin, Z. http://www.me. berkeley.edu/gri_mech/
22 Bilger, R. W., 1988, 'The Structure of Turbulent Nonpremixed Flames,' Proc. Combust. Inst., Vol. 22, pp. 475-488
23 Bade Shresha, S. O. and Karim, G. A., 1999, 'Hydrogen as an Additive to Methane for Spark Ignition Engine Applications,' Int. J. Hydrogen Energy, Vol. 24, pp. 577-586   DOI   ScienceOn
24 Ren, J-Y., Qin, W., Egolfopoulos, F. N. and Tsotsis, T. T., 2001, 'Strain-rate Effects on Hydrogen-enriched Lean Premixed Combustion,' Combust. Flame, Vol. 124, pp. 717-20   DOI   ScienceOn
25 Zamashchikov, V. V., Namyatov, I. G., Bunev, V. A. and Babkin V. S., 2004, 'On the Nature of Superadiabatic Emperatures in Premixed Rich Hydrocarbon Flames,' Combust. Explosion Shock Waves, Vol. 40: 32-5   DOI
26 Lutz, A. E., Kee, R. J., Grcar, J. F. and Rupley, F. M., 1997, 'A Fortran Program for Computing Opposed-flow Diffusion Flames,' Sandia National Laboratories Report, SAND 96-8243
27 Westbrook, C. K. and Dryer, F. L., 1984, 'Chemical Kinetic Modeling of Hydrocarbon Combustion,' Prog. Energy Combust. Sci., Vol. 10, pp. 1-57   DOI   ScienceOn