• Title/Summary/Keyword: 대용량 행렬분해

Search Result 7, Processing Time 0.025 seconds

An Analysis Method of Large Structure Using Matrix Blocking (블록화기법을 이용한 대형구조물의 해석방법)

  • Jung, Sung-Jin;Lee, Min-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2014
  • In this study, we studied how to perform the structural analysis which need a large-capacity flash memory with the computer program when the flash memory storage of a personal computer has no enough room for the analysis of structure. As one of the solutions of this problem, the blocking method of stiffness matrix, which is a method that stiffness matrix is divided by a few blocks and each block is sequentially used for the calculation of matrix decomposition, is proposed and an algorithm available in computer program is derived on the method. Finally, A structural analysis program (sNs) based on this study is developed and the correctness and efficiency of the algorithm is founded through some examples which are fundamental in structural analysis.

Proposing the Methods for Accelerating Computational Time of Large-Scale Commute Time Embedding (대용량 컴뮤트 타임 임베딩을 위한 연산 속도 개선 방식 제안)

  • Hahn, Hee-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.162-170
    • /
    • 2015
  • Commute time embedding involves computing the spectral decomposition of the graph Laplacian. It requires the computational burden proportional to $o(n^3)$, not suitable for large scale dataset. Many methods have been proposed to accelerate the computational time, which usually employ the Nystr${\ddot{o}}$m methods to approximate the spectral decomposition of the reduced graph Laplacian. They suffer from the lost of information by dint of sampling process. This paper proposes to reduce the errors by approximating the spectral decomposition of the graph Laplacian using that of the affinity matrix. However, this can not be applied as the data size increases, because it also requires spectral decomposition. Another method called approximate commute time embedding is implemented, which does not require spectral decomposition. The performance of the proposed algorithms is analyzed by computing the commute time on the patch graph.

An Improved Rectangular Decomposition Algorithm for Data Mining (데이터 마이닝을 위한 개선된 직사각형 분해 알고리즘)

  • Song, Ji-Young;Im, Young-Hee;Park, Dai-Hee
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.265-272
    • /
    • 2003
  • In this paper, we propose a novel improved algorithm for the rectangular decomposition technique for the purpose of performing data mining from large scaled database in a dynamic environment. The proposed algorithm performs the rectangular decompositions by transforming a binary matrix to bipartite graph and finding bicliques from the transformed bipartite graph. To demonstrate its effectiveness, we compare the proposed one which is based on the newly derived mathematical properties with those of other methods with respect to the classification rate, the number of rules, and complexity analysis.

Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset (암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링)

  • Ji, JiaQi;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.495-507
    • /
    • 2019
  • Data sparsity is one of the main challenges for the recommender system. The recommender system contains massive data in which only a small part is the observed data and the others are missing data. Most studies assume that missing data is randomly missing from the dataset. Therefore, they only use observed data to train recommendation model, then recommend items to users. In actual case, however, missing data do not lost randomly. In our research, treat these missing data as negative examples of users' interest. Three sample methods are seamlessly integrated into SVD++ algorithm and then propose SVD++_W, SVD++_R and SVD++_KNN algorithm. Experimental results show that proposed sample methods effectively improve the precision in Top-N recommendation over the baseline algorithms. Among the three improved algorithms, SVD++_KNN has the best performance, which shows that the KNN sample method is a more effective way to extract the negative examples of the users' interest.

Evaluation of the Use of Color Distribution Image Search in Various Setup (칼라 분포정보를 이용한 성능적 이미지 검색 평가)

  • Lee, Yong-Hwan;Ahn, Hyo-Chang;Rhee, Sang-Burm;Park, Jin-Yang
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.537-544
    • /
    • 2006
  • Image Search is one of the most exciting and fast growing research areas in the filed of multimedia technology. This paper conducts an empirical evaluation of color descriptor that uses the information of color distribution in color images, which is the most basic element for image search. With the experimental results, we observe that in the top 10% of precision, HSV, Daubechies 9/7 and 2 level decomposition have little better than others. Also histogram quadratic metrics outperform the Minkowski form distance metrics in similarity measurements, but spend more than 20 in computational times.

  • PDF

A Hybrid Collaborative Filtering Using a Low-dimensional Linear Model (저차원 선형 모델을 이용한 하이브리드 협력적 여과)

  • Ko, Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.777-785
    • /
    • 2009
  • Collaborative filtering is a technique used to predict whether a particular user will like a particular item. User-based or item-based collaborative techniques have been used extensively in many commercial recommender systems. In this paper, a hybrid collaborative filtering method that combines user-based and item-based methods using a low-dimensional linear model is proposed. The proposed method solves the problems of sparsity and a large database by using NMF among the low-dimensional linear models. In collaborative filtering systems the methods using the NMF are useful in expressing users as semantic relations. However, they are model-based methods and the process of computation is complex, so they can not recommend items dynamically. In order to complement the shortcomings, the proposed method clusters users into groups by using NMF and selects features of groups by using TF-IDF. Mutual information is then used to compute similarities between items. The proposed method clusters users into groups and extracts features of groups on offline and determines the most suitable group for an active user using the features of groups on online. Finally, the proposed method reduces the time required to classify an active user into a group and outperforms previous methods by combining user-based and item-based collaborative filtering methods.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF