• 제목/요약/키워드: 대역필터

Search Result 1,240, Processing Time 0.023 seconds

A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP (서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구)

  • Park, Sang-Hoon;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1535-1543
    • /
    • 2015
  • The brain-computer interface obtains a user's electroencephalogram as a replacement communication unit for the disabled such that the user is able to control machines by simply thinking instead of using hands or feet. In this paper, we propose a feature extraction method based on a non-selected filter by SBCSP to classify motor imagery EEG. First, we divide frequencies (4~40 Hz) into 4-Hz units and apply CSP to each Unit. Second, we obtain the FLD score vector by combining FLD results. Finally, the FLD score vector is projected onto the optimal plane for classification using PCA. We use BCI Competition III dataset IVa, and Extracted features are used as input for LS-SVM. The classification accuracy of the proposed method was evaluated using $10{\times}10$ fold cross-validation. For subjects 'aa', 'al', 'av', 'aw', and 'ay', results were $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, and $93.50{\pm}0.69%$, respectively.

A Comparative Study of Aggregation Schemes for Concurrent Transmission over Multiple WLAN Interfaces (다중 무선랜 인터페이스 전송을 위한 결합 방식의 성능 연구)

  • Saputra, Yuris Mulya;Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.18-25
    • /
    • 2014
  • To increase wireless capacity, the concurrent use of multiple wireless interfaces on different frequency bands, called aggregation, can be considered. In this paper, we focus on aggregation of multiple Wi-Fi interfaces with packet-level traffic spreading between the interfaces. Two aggregation schemes, link bonding and multipath TCP (MPTCP), are tested and compared in a dualband Wi-Fi radio system with their Linux implementation. Various test conditions such as traffic types, network delay, locations, interface failures and configuration parameters are considered. Experimental results show that aggregation increases throughput performance significantly over the use of a single interface. Link bonding achieves lower throughput than MPTCP due to duplicate TCP acknowledgements (ACKs) resulting from packet reordering and filtering such duplicate ACKs out is considered as a possible solution. However, link bonding is fast responsive to links' status changes such as a link failure. It is shown that different combinations of interface weights for packet spread in link bonding result in different throughput performance, envisioning a spatio-temporal adaptation of the weights. We also develop a mathematical model of power consumption and compare the power efficiency of the schemes applying different power consumption profiles.

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Effective PPG Signal Processing Method for Detecting Emotional Stimulus (감성 자극 판단을 위한 효과적인 PPG 신호 처리 방법)

  • Oh, Dong-Gi;Min, Byung-Seok;Kwon, Sung-Oh;Kim, Hyun-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.393-402
    • /
    • 2012
  • In this study, we propose a signal processing algorithm to measure the arousal level of a human subject using a PPG(Photoplethysmography) sensor. From the measured PPG signals, the arousal level is determined by PPI(Pulse to Pulse Interval) and discrete-time signal processing. We ran psychophysical experiments displaying visual stimuli on TV display while measuring PPG signal from a finger, where the nature landscape scenes were used for restorative effect, and the urban environments were used to stimulate the stress. However, the measured PPG signals may include noise due to subject movement and measurement error, which results in incorrect detections. In this paper, to mitigate the noise impact on stimulus detection, we propose a detecting algorithm using digital signal processing methods and statistics of measured signals. A filter is adopted to remove a high frequency noise and adaptively designed taking into account the statistics of the measured PPG signals. Moreover we employ a hysteresis method to reduce the distortion of PPI in decision of emotional. Via experiment, we show that the proposed scheme reduces signal noise and improves stimulus detection.

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Evanescent-mode Waveguide Band-pass Filter Applied by Novel Metal Post Capacitor (새로운 금속막대 커패시터를 적용한 감쇄모드 도파관 대역통과 여파기)

  • Kim, Byung-Mun;Yun, Li-Ho;Lee, Sang-Min;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.775-782
    • /
    • 2022
  • In this paper, a novel small-diameter cylindrical post capacitor inserted into an evanescent-mode rectangular waveguide (EMRWG) is proposed for easier tuning. In order to feed the EMRWG, the proposed structure uses a single ridge rectangular waveguide with the same width and height as the waveguide at the input and output ends. The inserted post capacitor are made up a circular groove formed in the center of the lower part of the broad wall of the EMRWG, and a concentric cylindrical post inserted into the upper part. First, the equivalent circuit model for the proposed structure is presented. When the EMRWG and the single ridge waveguide are combined, the joint susceptance and the turns ratio of the ideal transformer are calculated by two simulations using HFSS (3d fullwave simulator, Ansoft Co.) respectively. The susceptance and resonance characteristics of the inserted post were analyzed by using the obtained parameters and the characteristics of the EMRWG. A 2-post filter with a center frequency of 4.5 GHz and a bandwidth of 170 MHz was designed using a WR-90 waveguide, and the simulation results by using the HFSS and CST, equivalent circuit model were in good agreement.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms (효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로)

  • Heo, Gwang-Hee;Lee, Chin-Ok;Seo, Sang-Gu;Jeong, Yu-Seung;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.23-32
    • /
    • 2020
  • The compression sensing technology, CAFB, was developed to obtain the raw signal of the target structure by compressing it into a signal of the intended frequency range. At this point, for compression sensing, the CAFB can be optimized for various reference signals depending on the desired frequency range of the target structure. In addition, optimized CAFB should be able to efficiently compress the effective structural answers of the target structure even in sudden/dangerous conditions such as earthquakes. In this paper, the targeted frequency range for efficient structural integrity monitoring of relatively flexible structures was set below 10Hz, and the optimization method of CAFB for this purpose and the seismic response performance of CAFB in seismic conditions were evaluated experimentally. To this end, in this paper, CAFB was first optimized using Kobe seismic waveform, and embedded it in its own wireless IDAQ system. In addition, seismic response tests were conducted on two span bridges using Kobe seismic waveform. Finally, using an IDAQ system with built-in CAFB, the seismic response of the two-span bridge was wirelessly obtained, and the compression signal obtained was cross-referenced with the raw signal. From the results of the experiment, the compression signal showed excellent response performance and data compression effects in relation to the raw signal, and CAFB was able to effectively compress and sensitize the effective structural response of the structure even in seismic situations. Finally, in this paper, the optimization method of CAFB was presented to suit the intended frequency range (less than 10Hz), and CAFB proved to be an economical and efficient data compression sensing technology for instrumentation-monitoring of seismic conditions.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.